Abstract

A 4-m aperture light collector has been built using the mosaic principle specifically for high resolution stellar spectroscopy in the near infrared by the Fourier multiplex technique. The most novel feature is complete servo control of all optical elements to bring individual images to a common point. Initial goals were a spectral survey of ir objects, and the testing of techniques for a larger future collector. However, the project has been stopped by lack of interest and support; the finished collector will not be used.

© 1977 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Connes, in Theory and Observations of Normal Stellar Atmosphere, O. Gingerich, Ed. (MIT Press, Cambridge, Mass., 1969), p. 323.
  2. P. Connes, J. Connes, J. P. Maillard, Atlas of Near Infrared and Planetary Spectra (CNRS, Paris, 1970). For a general review, see P. Connes, Ann. Rev. Astron. Astrophys. 8, 209 (1970).
    [CrossRef]
  3. P. B. Fellgett, in Optical Instruments and Technology, J. Home Dickson, Ed. (Oriel Press, Boston, Mass., 1969), p. 475.
  4. L. Mertz, Optical Instruments and Technology, J. Home Dickson, Ed. (Oriel Press, Boston, Mass., (1969), p. 507.
  5. D. J. Weyman, N. P. Carleton, Sky Telescope 44, 159 (1972).
  6. M. Cohen, R. Treffers, Astrophys. J. 188, 545 (1974).
    [CrossRef]
  7. J. Borgman, C. D. Andriesse, R. J. Van Duinen, “Infrared Astronomy and ESO”, Internal ESO Report (1972).
  8. W. A. Stein, N. J. Woolf, Appl. Opt. 10, 655 (1971).
    [CrossRef] [PubMed]
  9. H. L. Johnson, W. L. Richards, Astrophys. J. 160, 111 (1970).
    [CrossRef]
  10. F. Melchiorri, Nuovo Cimento 88, 167 (1972).
  11. J. Connes, H. Delouis, P. Connes, G. Guelachvili, J. P. Maillard, G. Michel, Nouv, Rev. Opt. Appl. 1, 3 (1971).
    [CrossRef]
  12. These are precisely the operating conditions of heterodyne spectroscopy; while the detector is physically larger everything goes as if it had been stopped down to a ≃λ2 area. An early discussion of the relative merits of classical vs heterodyne spectroscopy will be found in Ref. 13 and more up to date ones in Ref. 14. Recent results15,16 show the heterodyne technique to have a definite future at long wavelengths (10-μm window and beyond) for extreme resolution narrowband analysis. Should very sharp lines, from coherent processes, be discovered in the ir, it would be the obvious tool especially in space since there is no turbulence spreading. However, it does not seem likely to compete with FS at shorter wavelengths and/or for wide spectral range analysis, or again when the wanted resolution is matched to a Doppler broadened linewidth. Also we note the resolutions reported in Refs. 15 and 16 are 18 MHz and 25 MHz, while operating Fourier spectrometers have 2-m maximum path difference11 or about 90-MHz resolution (depending on selected apodization); another one under construction17 goes to 20 m (9 MHz). So, in practice (and considering incoherent sources only), the orders of magnitude of resolutions are comparable.
  13. P. Connes, in Proceedings of International School of Physics, Course 31, P. A. Miles, Ed. (Academic, New York, 1964), p. 207.
  14. Proceedings of Workshop on Coherent Detection in Astronomy, in Space Sci. Rev.17, 5, (1975).
  15. D. W. Peterson, M. A. Johnson, A. L. Betz, Nature 250, 128 (1974).
    [CrossRef]
  16. M. Mumma, K. Kostiuk, S. Cohen, D. Buhl, P. C. Von Thuna, Space Sci. Rev. 17, 661 (1975).
    [CrossRef]
  17. P. Connes, G. Michel, Appl. Opt. 14, 2067 (1975).
    [CrossRef] [PubMed]
  18. This device includes an f/0.9 parabolic mirror giving an image spread less than 0.1 mm and an aplanetic strontium titanate spherical lens on which the PbS cell is deposited; it gives a demagnification factor n2 = 5, so aberrations are negligible for 0.1-mm cells. An accurate high aperture condenser actually relaxes collector tolerances and is an essential component of the whole system.
  19. R C A Corporation, Montreal, Canada.
  20. D. Hall, R. Aikens, R. Joyce, T. M. McCurnin, Appl. Opt. 14, 450 (1975).
    [CrossRef] [PubMed]
  21. A comparable development has taken place in the far ir. A new Josephson junction bolometer22 gives a NEP as small as the one of the doped germanium bolometer, but with a greater sensitive area. As a direct consequence, Richards is proposing23 a low accuracy balloon borne collector for sky survey work.
  22. J. Clarke, G. I. Hoffer, P. L. Richards, Rev. Phys. Appl. 9, 69 (1974).
    [CrossRef]
  23. P. L. Richards, A proposal for an unbiased Far Infrared All Sky Survey, Dept. of Physics, University of California, Berkeley (1975).
  24. J. A. Westphal, Final Report, NASA Grant NGR 05-002-I85, California Institute of Technology, Pasadena, California.
  25. With the very highest resolution data (δσ ≤ 0.05 cm−1) a reference spectrum is hardly needed; telluric lines are immediately seen sharper than stellar ones.26
  26. P. Connes, G. Michel, Astrophys. J. 190, L. 29 (1974).
    [CrossRef]
  27. J. Connes, P. Connes, J. P. Maillard, J. Phys. C 28, 136 (1967).
  28. J. Connes, P. Connes, J. Opt. Soc. Am. 56, 896 (1966).
    [CrossRef]
  29. H. Larson, U. Fink, Appl. Opt. 14, 2085 (1975).
    [CrossRef] [PubMed]
  30. H. L. Johnson, Ann. Rev. Astron. Astrophys. 4, 193 (1966).
    [CrossRef]
  31. G. Neugebauer, R. Leighton, N69–37993, NTIS, U.S. Department of Commerce.
  32. However, for the detection of interstellar lines, the full instrumental resolution of our system17 (0.01 cm−1) is required. A particularly interesting problem would have been searching for interstellar CH4 (suggested by G. Herzberg). For optimum SNR on the brightest objects with the Ge detector, some reduction of bandpass with filters is necessary because of photon noise.
  33. H. Spinrad, Ann. Rev. Astron. Astrophys. 7, 249 (1969); see also J. C. Pecker, Mem. Soc. R. Sci. Liege III, 243 (1972).
    [CrossRef]
  34. D. L. Lambert, A. L. Brooke, T. G. Barnes, Astrophys. J. 186, 573 (1973).
    [CrossRef]
  35. M. Querci, F. Querci, Astron. Astrophys. 42, 329 (1975).
  36. E. F. Montgomery, P. Connes, J. Connes, F. N. Edmonds, Astrophys. J. Suppl. Ser. 19, 1 (1969).
    [CrossRef]
  37. H. Spinrad, L. D. Kaplan, P. Connes, J. Connes, J. P. Maillard, Conference on Late Type stars, KPNO Contrib. 554, 59 (1970).
  38. R. Beer, R. B. Hutchison, R. H. Norton, Astrophys. J. 172, 89 (1972).
    [CrossRef]
  39. J. P. Maillard, C. R. Acad Sci. Ser B 277, 127 (1973).
  40. T. G. Barnes, D. L. Lambert, A. E. Potter, Astrophys. J. 187, 73 (1974).
    [CrossRef]
  41. R. P. Kovar, A. E. Potter, N. S. Kovar, L. Trafton, Astrophys. J. 170, 449 (1971).
    [CrossRef]
  42. H. L. Johnson, Vistas Astron. 10, 149 (1968).
    [CrossRef]
  43. R. B. Leighton, E. E. Becklin, G. Neugebauer, Astrophys. J. 142, 399 (1965).
    [CrossRef]
  44. M. Cuisenier, Thèse, Université de Paris XI (1974).
  45. D. W. Burr, Design and Construction of Large Steerable Aerials, IEE Conference Publication21, 84 (1966).
  46. G. J. Watt, Optical Telescope Technology, NASA SP. 233, 303 (1969).
  47. H. F. Wishina, Sci. Technol. Ser.21, Am. Astronaut. Soc., Tarzana, Cal. (1972), p. 347.
  48. R. A. Muller, A. Buffington, J. Opt. Soc. Am. 54, 1200 (1974).
    [CrossRef]
  49. All small mirrors from M3 to M9 are maintained in a stream of dry filtered laboratory air by keeping the enclosure slightly above atmospheric pressure. M1 and M2 alone are in the outdoor atmosphere and have overcoated aluminum layers. Note that a four mirror relay system was needed at Palomar.17
  50. D. K. Burge, H. E. Bennett, E. J. Ashley, Appl. Opt. 12, 42 (1973).
    [CrossRef] [PubMed]
  51. An additional focusing error signal may be produced from the same set of detectors at the cost of losing half of the light. Let us put in the plane of the final mosaic image at L2 a Foucault grid with equal blank and opaque spaces. If oscillated by half of a mosaic element diameter, it unmasks alternately the right and left (or upper and lower) halves of each mirror. Any induced modulation at the same frequency in ΔXΔY means the image CG is oscillated; demodulation gives a dc output proportional to focusing error and again independent of image size or brightness. Even if servo focusing is not needed, this (untried) scheme should provide better initial focusing than visual tests.
  52. D. W. Fisher, R. F. Leftwich, H. W. Yates, Appl. Opt. 5, 507 (1966).
    [CrossRef] [PubMed]
  53. Type S1-1930, Airfloat Corp., P.O. Box 300 C, Decatur, Ill.
  54. We thank the Laboratoire des Prototypes du CNRS for making the cell and mounting system.
  55. R. Hanbury Brown, J. Davis, L. R. Allen, Mon. Not. R. Astron. Soc 137, 375 (1967); Mon. Not. R. Astron. Soc 167, 121 (1974).
  56. The Authorized Version of the Bible, Genesis, 11, King James I edition London (1611).
  57. “Ado” is normally rendered into French as “bruit” (noise).
  58. G. Lemaitre, Nouv. Rev. Opt. Appl. 5, 361 (1974); Astron. Astrophys. 44, 305 (1975).
    [CrossRef]
  59. J. F. Grainger, J. Phys. E. 4, 713 (1971).
    [CrossRef]

1975 (5)

1974 (7)

G. Lemaitre, Nouv. Rev. Opt. Appl. 5, 361 (1974); Astron. Astrophys. 44, 305 (1975).
[CrossRef]

R. A. Muller, A. Buffington, J. Opt. Soc. Am. 54, 1200 (1974).
[CrossRef]

M. Cohen, R. Treffers, Astrophys. J. 188, 545 (1974).
[CrossRef]

T. G. Barnes, D. L. Lambert, A. E. Potter, Astrophys. J. 187, 73 (1974).
[CrossRef]

J. Clarke, G. I. Hoffer, P. L. Richards, Rev. Phys. Appl. 9, 69 (1974).
[CrossRef]

P. Connes, G. Michel, Astrophys. J. 190, L. 29 (1974).
[CrossRef]

D. W. Peterson, M. A. Johnson, A. L. Betz, Nature 250, 128 (1974).
[CrossRef]

1973 (3)

D. L. Lambert, A. L. Brooke, T. G. Barnes, Astrophys. J. 186, 573 (1973).
[CrossRef]

J. P. Maillard, C. R. Acad Sci. Ser B 277, 127 (1973).

D. K. Burge, H. E. Bennett, E. J. Ashley, Appl. Opt. 12, 42 (1973).
[CrossRef] [PubMed]

1972 (3)

R. Beer, R. B. Hutchison, R. H. Norton, Astrophys. J. 172, 89 (1972).
[CrossRef]

D. J. Weyman, N. P. Carleton, Sky Telescope 44, 159 (1972).

F. Melchiorri, Nuovo Cimento 88, 167 (1972).

1971 (4)

J. Connes, H. Delouis, P. Connes, G. Guelachvili, J. P. Maillard, G. Michel, Nouv, Rev. Opt. Appl. 1, 3 (1971).
[CrossRef]

R. P. Kovar, A. E. Potter, N. S. Kovar, L. Trafton, Astrophys. J. 170, 449 (1971).
[CrossRef]

W. A. Stein, N. J. Woolf, Appl. Opt. 10, 655 (1971).
[CrossRef] [PubMed]

J. F. Grainger, J. Phys. E. 4, 713 (1971).
[CrossRef]

1970 (2)

H. Spinrad, L. D. Kaplan, P. Connes, J. Connes, J. P. Maillard, Conference on Late Type stars, KPNO Contrib. 554, 59 (1970).

H. L. Johnson, W. L. Richards, Astrophys. J. 160, 111 (1970).
[CrossRef]

1969 (3)

H. Spinrad, Ann. Rev. Astron. Astrophys. 7, 249 (1969); see also J. C. Pecker, Mem. Soc. R. Sci. Liege III, 243 (1972).
[CrossRef]

E. F. Montgomery, P. Connes, J. Connes, F. N. Edmonds, Astrophys. J. Suppl. Ser. 19, 1 (1969).
[CrossRef]

G. J. Watt, Optical Telescope Technology, NASA SP. 233, 303 (1969).

1968 (1)

H. L. Johnson, Vistas Astron. 10, 149 (1968).
[CrossRef]

1967 (2)

J. Connes, P. Connes, J. P. Maillard, J. Phys. C 28, 136 (1967).

R. Hanbury Brown, J. Davis, L. R. Allen, Mon. Not. R. Astron. Soc 137, 375 (1967); Mon. Not. R. Astron. Soc 167, 121 (1974).

1966 (3)

1965 (1)

R. B. Leighton, E. E. Becklin, G. Neugebauer, Astrophys. J. 142, 399 (1965).
[CrossRef]

Aikens, R.

Allen, L. R.

R. Hanbury Brown, J. Davis, L. R. Allen, Mon. Not. R. Astron. Soc 137, 375 (1967); Mon. Not. R. Astron. Soc 167, 121 (1974).

Andriesse, C. D.

J. Borgman, C. D. Andriesse, R. J. Van Duinen, “Infrared Astronomy and ESO”, Internal ESO Report (1972).

Ashley, E. J.

Barnes, T. G.

T. G. Barnes, D. L. Lambert, A. E. Potter, Astrophys. J. 187, 73 (1974).
[CrossRef]

D. L. Lambert, A. L. Brooke, T. G. Barnes, Astrophys. J. 186, 573 (1973).
[CrossRef]

Becklin, E. E.

R. B. Leighton, E. E. Becklin, G. Neugebauer, Astrophys. J. 142, 399 (1965).
[CrossRef]

Beer, R.

R. Beer, R. B. Hutchison, R. H. Norton, Astrophys. J. 172, 89 (1972).
[CrossRef]

Bennett, H. E.

Betz, A. L.

D. W. Peterson, M. A. Johnson, A. L. Betz, Nature 250, 128 (1974).
[CrossRef]

Borgman, J.

J. Borgman, C. D. Andriesse, R. J. Van Duinen, “Infrared Astronomy and ESO”, Internal ESO Report (1972).

Brooke, A. L.

D. L. Lambert, A. L. Brooke, T. G. Barnes, Astrophys. J. 186, 573 (1973).
[CrossRef]

Buffington, A.

R. A. Muller, A. Buffington, J. Opt. Soc. Am. 54, 1200 (1974).
[CrossRef]

Buhl, D.

M. Mumma, K. Kostiuk, S. Cohen, D. Buhl, P. C. Von Thuna, Space Sci. Rev. 17, 661 (1975).
[CrossRef]

Burge, D. K.

Burr, D. W.

D. W. Burr, Design and Construction of Large Steerable Aerials, IEE Conference Publication21, 84 (1966).

Carleton, N. P.

D. J. Weyman, N. P. Carleton, Sky Telescope 44, 159 (1972).

Clarke, J.

J. Clarke, G. I. Hoffer, P. L. Richards, Rev. Phys. Appl. 9, 69 (1974).
[CrossRef]

Cohen, M.

M. Cohen, R. Treffers, Astrophys. J. 188, 545 (1974).
[CrossRef]

Cohen, S.

M. Mumma, K. Kostiuk, S. Cohen, D. Buhl, P. C. Von Thuna, Space Sci. Rev. 17, 661 (1975).
[CrossRef]

Connes, J.

J. Connes, H. Delouis, P. Connes, G. Guelachvili, J. P. Maillard, G. Michel, Nouv, Rev. Opt. Appl. 1, 3 (1971).
[CrossRef]

H. Spinrad, L. D. Kaplan, P. Connes, J. Connes, J. P. Maillard, Conference on Late Type stars, KPNO Contrib. 554, 59 (1970).

E. F. Montgomery, P. Connes, J. Connes, F. N. Edmonds, Astrophys. J. Suppl. Ser. 19, 1 (1969).
[CrossRef]

J. Connes, P. Connes, J. P. Maillard, J. Phys. C 28, 136 (1967).

J. Connes, P. Connes, J. Opt. Soc. Am. 56, 896 (1966).
[CrossRef]

P. Connes, J. Connes, J. P. Maillard, Atlas of Near Infrared and Planetary Spectra (CNRS, Paris, 1970). For a general review, see P. Connes, Ann. Rev. Astron. Astrophys. 8, 209 (1970).
[CrossRef]

Connes, P.

P. Connes, G. Michel, Appl. Opt. 14, 2067 (1975).
[CrossRef] [PubMed]

P. Connes, G. Michel, Astrophys. J. 190, L. 29 (1974).
[CrossRef]

J. Connes, H. Delouis, P. Connes, G. Guelachvili, J. P. Maillard, G. Michel, Nouv, Rev. Opt. Appl. 1, 3 (1971).
[CrossRef]

H. Spinrad, L. D. Kaplan, P. Connes, J. Connes, J. P. Maillard, Conference on Late Type stars, KPNO Contrib. 554, 59 (1970).

E. F. Montgomery, P. Connes, J. Connes, F. N. Edmonds, Astrophys. J. Suppl. Ser. 19, 1 (1969).
[CrossRef]

J. Connes, P. Connes, J. P. Maillard, J. Phys. C 28, 136 (1967).

J. Connes, P. Connes, J. Opt. Soc. Am. 56, 896 (1966).
[CrossRef]

P. Connes, J. Connes, J. P. Maillard, Atlas of Near Infrared and Planetary Spectra (CNRS, Paris, 1970). For a general review, see P. Connes, Ann. Rev. Astron. Astrophys. 8, 209 (1970).
[CrossRef]

P. Connes, in Proceedings of International School of Physics, Course 31, P. A. Miles, Ed. (Academic, New York, 1964), p. 207.

P. Connes, in Theory and Observations of Normal Stellar Atmosphere, O. Gingerich, Ed. (MIT Press, Cambridge, Mass., 1969), p. 323.

Cuisenier, M.

M. Cuisenier, Thèse, Université de Paris XI (1974).

Davis, J.

R. Hanbury Brown, J. Davis, L. R. Allen, Mon. Not. R. Astron. Soc 137, 375 (1967); Mon. Not. R. Astron. Soc 167, 121 (1974).

Delouis, H.

J. Connes, H. Delouis, P. Connes, G. Guelachvili, J. P. Maillard, G. Michel, Nouv, Rev. Opt. Appl. 1, 3 (1971).
[CrossRef]

Edmonds, F. N.

E. F. Montgomery, P. Connes, J. Connes, F. N. Edmonds, Astrophys. J. Suppl. Ser. 19, 1 (1969).
[CrossRef]

Fellgett, P. B.

P. B. Fellgett, in Optical Instruments and Technology, J. Home Dickson, Ed. (Oriel Press, Boston, Mass., 1969), p. 475.

Fink, U.

Fisher, D. W.

Grainger, J. F.

J. F. Grainger, J. Phys. E. 4, 713 (1971).
[CrossRef]

Guelachvili, G.

J. Connes, H. Delouis, P. Connes, G. Guelachvili, J. P. Maillard, G. Michel, Nouv, Rev. Opt. Appl. 1, 3 (1971).
[CrossRef]

Hall, D.

Hanbury Brown, R.

R. Hanbury Brown, J. Davis, L. R. Allen, Mon. Not. R. Astron. Soc 137, 375 (1967); Mon. Not. R. Astron. Soc 167, 121 (1974).

Hoffer, G. I.

J. Clarke, G. I. Hoffer, P. L. Richards, Rev. Phys. Appl. 9, 69 (1974).
[CrossRef]

Hutchison, R. B.

R. Beer, R. B. Hutchison, R. H. Norton, Astrophys. J. 172, 89 (1972).
[CrossRef]

Johnson, H. L.

H. L. Johnson, W. L. Richards, Astrophys. J. 160, 111 (1970).
[CrossRef]

H. L. Johnson, Vistas Astron. 10, 149 (1968).
[CrossRef]

H. L. Johnson, Ann. Rev. Astron. Astrophys. 4, 193 (1966).
[CrossRef]

Johnson, M. A.

D. W. Peterson, M. A. Johnson, A. L. Betz, Nature 250, 128 (1974).
[CrossRef]

Joyce, R.

Kaplan, L. D.

H. Spinrad, L. D. Kaplan, P. Connes, J. Connes, J. P. Maillard, Conference on Late Type stars, KPNO Contrib. 554, 59 (1970).

Kostiuk, K.

M. Mumma, K. Kostiuk, S. Cohen, D. Buhl, P. C. Von Thuna, Space Sci. Rev. 17, 661 (1975).
[CrossRef]

Kovar, N. S.

R. P. Kovar, A. E. Potter, N. S. Kovar, L. Trafton, Astrophys. J. 170, 449 (1971).
[CrossRef]

Kovar, R. P.

R. P. Kovar, A. E. Potter, N. S. Kovar, L. Trafton, Astrophys. J. 170, 449 (1971).
[CrossRef]

Lambert, D. L.

T. G. Barnes, D. L. Lambert, A. E. Potter, Astrophys. J. 187, 73 (1974).
[CrossRef]

D. L. Lambert, A. L. Brooke, T. G. Barnes, Astrophys. J. 186, 573 (1973).
[CrossRef]

Larson, H.

Leftwich, R. F.

Leighton, R.

G. Neugebauer, R. Leighton, N69–37993, NTIS, U.S. Department of Commerce.

Leighton, R. B.

R. B. Leighton, E. E. Becklin, G. Neugebauer, Astrophys. J. 142, 399 (1965).
[CrossRef]

Lemaitre, G.

G. Lemaitre, Nouv. Rev. Opt. Appl. 5, 361 (1974); Astron. Astrophys. 44, 305 (1975).
[CrossRef]

Maillard, J. P.

J. P. Maillard, C. R. Acad Sci. Ser B 277, 127 (1973).

J. Connes, H. Delouis, P. Connes, G. Guelachvili, J. P. Maillard, G. Michel, Nouv, Rev. Opt. Appl. 1, 3 (1971).
[CrossRef]

H. Spinrad, L. D. Kaplan, P. Connes, J. Connes, J. P. Maillard, Conference on Late Type stars, KPNO Contrib. 554, 59 (1970).

J. Connes, P. Connes, J. P. Maillard, J. Phys. C 28, 136 (1967).

P. Connes, J. Connes, J. P. Maillard, Atlas of Near Infrared and Planetary Spectra (CNRS, Paris, 1970). For a general review, see P. Connes, Ann. Rev. Astron. Astrophys. 8, 209 (1970).
[CrossRef]

McCurnin, T. M.

Melchiorri, F.

F. Melchiorri, Nuovo Cimento 88, 167 (1972).

Mertz, L.

L. Mertz, Optical Instruments and Technology, J. Home Dickson, Ed. (Oriel Press, Boston, Mass., (1969), p. 507.

Michel, G.

P. Connes, G. Michel, Appl. Opt. 14, 2067 (1975).
[CrossRef] [PubMed]

P. Connes, G. Michel, Astrophys. J. 190, L. 29 (1974).
[CrossRef]

J. Connes, H. Delouis, P. Connes, G. Guelachvili, J. P. Maillard, G. Michel, Nouv, Rev. Opt. Appl. 1, 3 (1971).
[CrossRef]

Montgomery, E. F.

E. F. Montgomery, P. Connes, J. Connes, F. N. Edmonds, Astrophys. J. Suppl. Ser. 19, 1 (1969).
[CrossRef]

Muller, R. A.

R. A. Muller, A. Buffington, J. Opt. Soc. Am. 54, 1200 (1974).
[CrossRef]

Mumma, M.

M. Mumma, K. Kostiuk, S. Cohen, D. Buhl, P. C. Von Thuna, Space Sci. Rev. 17, 661 (1975).
[CrossRef]

Neugebauer, G.

R. B. Leighton, E. E. Becklin, G. Neugebauer, Astrophys. J. 142, 399 (1965).
[CrossRef]

G. Neugebauer, R. Leighton, N69–37993, NTIS, U.S. Department of Commerce.

Norton, R. H.

R. Beer, R. B. Hutchison, R. H. Norton, Astrophys. J. 172, 89 (1972).
[CrossRef]

Peterson, D. W.

D. W. Peterson, M. A. Johnson, A. L. Betz, Nature 250, 128 (1974).
[CrossRef]

Potter, A. E.

T. G. Barnes, D. L. Lambert, A. E. Potter, Astrophys. J. 187, 73 (1974).
[CrossRef]

R. P. Kovar, A. E. Potter, N. S. Kovar, L. Trafton, Astrophys. J. 170, 449 (1971).
[CrossRef]

Querci, F.

M. Querci, F. Querci, Astron. Astrophys. 42, 329 (1975).

Querci, M.

M. Querci, F. Querci, Astron. Astrophys. 42, 329 (1975).

Richards, P. L.

J. Clarke, G. I. Hoffer, P. L. Richards, Rev. Phys. Appl. 9, 69 (1974).
[CrossRef]

P. L. Richards, A proposal for an unbiased Far Infrared All Sky Survey, Dept. of Physics, University of California, Berkeley (1975).

Richards, W. L.

H. L. Johnson, W. L. Richards, Astrophys. J. 160, 111 (1970).
[CrossRef]

Spinrad, H.

H. Spinrad, L. D. Kaplan, P. Connes, J. Connes, J. P. Maillard, Conference on Late Type stars, KPNO Contrib. 554, 59 (1970).

H. Spinrad, Ann. Rev. Astron. Astrophys. 7, 249 (1969); see also J. C. Pecker, Mem. Soc. R. Sci. Liege III, 243 (1972).
[CrossRef]

Stein, W. A.

Trafton, L.

R. P. Kovar, A. E. Potter, N. S. Kovar, L. Trafton, Astrophys. J. 170, 449 (1971).
[CrossRef]

Treffers, R.

M. Cohen, R. Treffers, Astrophys. J. 188, 545 (1974).
[CrossRef]

Van Duinen, R. J.

J. Borgman, C. D. Andriesse, R. J. Van Duinen, “Infrared Astronomy and ESO”, Internal ESO Report (1972).

Von Thuna, P. C.

M. Mumma, K. Kostiuk, S. Cohen, D. Buhl, P. C. Von Thuna, Space Sci. Rev. 17, 661 (1975).
[CrossRef]

Watt, G. J.

G. J. Watt, Optical Telescope Technology, NASA SP. 233, 303 (1969).

Westphal, J. A.

J. A. Westphal, Final Report, NASA Grant NGR 05-002-I85, California Institute of Technology, Pasadena, California.

Weyman, D. J.

D. J. Weyman, N. P. Carleton, Sky Telescope 44, 159 (1972).

Wishina, H. F.

H. F. Wishina, Sci. Technol. Ser.21, Am. Astronaut. Soc., Tarzana, Cal. (1972), p. 347.

Woolf, N. J.

Yates, H. W.

Ann. Rev. Astron. Astrophys. (2)

H. L. Johnson, Ann. Rev. Astron. Astrophys. 4, 193 (1966).
[CrossRef]

H. Spinrad, Ann. Rev. Astron. Astrophys. 7, 249 (1969); see also J. C. Pecker, Mem. Soc. R. Sci. Liege III, 243 (1972).
[CrossRef]

Appl. Opt. (6)

Astron. Astrophys. (1)

M. Querci, F. Querci, Astron. Astrophys. 42, 329 (1975).

Astrophys. J. (8)

D. L. Lambert, A. L. Brooke, T. G. Barnes, Astrophys. J. 186, 573 (1973).
[CrossRef]

R. Beer, R. B. Hutchison, R. H. Norton, Astrophys. J. 172, 89 (1972).
[CrossRef]

T. G. Barnes, D. L. Lambert, A. E. Potter, Astrophys. J. 187, 73 (1974).
[CrossRef]

R. P. Kovar, A. E. Potter, N. S. Kovar, L. Trafton, Astrophys. J. 170, 449 (1971).
[CrossRef]

R. B. Leighton, E. E. Becklin, G. Neugebauer, Astrophys. J. 142, 399 (1965).
[CrossRef]

M. Cohen, R. Treffers, Astrophys. J. 188, 545 (1974).
[CrossRef]

H. L. Johnson, W. L. Richards, Astrophys. J. 160, 111 (1970).
[CrossRef]

P. Connes, G. Michel, Astrophys. J. 190, L. 29 (1974).
[CrossRef]

Astrophys. J. Suppl. Ser. (1)

E. F. Montgomery, P. Connes, J. Connes, F. N. Edmonds, Astrophys. J. Suppl. Ser. 19, 1 (1969).
[CrossRef]

C. R. Acad Sci. Ser B (1)

J. P. Maillard, C. R. Acad Sci. Ser B 277, 127 (1973).

Conference on Late Type stars, KPNO Contrib. (1)

H. Spinrad, L. D. Kaplan, P. Connes, J. Connes, J. P. Maillard, Conference on Late Type stars, KPNO Contrib. 554, 59 (1970).

J. Opt. Soc. Am. (2)

R. A. Muller, A. Buffington, J. Opt. Soc. Am. 54, 1200 (1974).
[CrossRef]

J. Connes, P. Connes, J. Opt. Soc. Am. 56, 896 (1966).
[CrossRef]

J. Phys. C (1)

J. Connes, P. Connes, J. P. Maillard, J. Phys. C 28, 136 (1967).

J. Phys. E. (1)

J. F. Grainger, J. Phys. E. 4, 713 (1971).
[CrossRef]

Mon. Not. R. Astron. Soc (1)

R. Hanbury Brown, J. Davis, L. R. Allen, Mon. Not. R. Astron. Soc 137, 375 (1967); Mon. Not. R. Astron. Soc 167, 121 (1974).

Nature (1)

D. W. Peterson, M. A. Johnson, A. L. Betz, Nature 250, 128 (1974).
[CrossRef]

Nouv, Rev. Opt. Appl. (1)

J. Connes, H. Delouis, P. Connes, G. Guelachvili, J. P. Maillard, G. Michel, Nouv, Rev. Opt. Appl. 1, 3 (1971).
[CrossRef]

Nouv. Rev. Opt. Appl. (1)

G. Lemaitre, Nouv. Rev. Opt. Appl. 5, 361 (1974); Astron. Astrophys. 44, 305 (1975).
[CrossRef]

Nuovo Cimento (1)

F. Melchiorri, Nuovo Cimento 88, 167 (1972).

Optical Telescope Technology (1)

G. J. Watt, Optical Telescope Technology, NASA SP. 233, 303 (1969).

Rev. Phys. Appl. (1)

J. Clarke, G. I. Hoffer, P. L. Richards, Rev. Phys. Appl. 9, 69 (1974).
[CrossRef]

Sky Telescope (1)

D. J. Weyman, N. P. Carleton, Sky Telescope 44, 159 (1972).

Space Sci. Rev. (1)

M. Mumma, K. Kostiuk, S. Cohen, D. Buhl, P. C. Von Thuna, Space Sci. Rev. 17, 661 (1975).
[CrossRef]

Vistas Astron. (1)

H. L. Johnson, Vistas Astron. 10, 149 (1968).
[CrossRef]

Other (25)

P. L. Richards, A proposal for an unbiased Far Infrared All Sky Survey, Dept. of Physics, University of California, Berkeley (1975).

J. A. Westphal, Final Report, NASA Grant NGR 05-002-I85, California Institute of Technology, Pasadena, California.

With the very highest resolution data (δσ ≤ 0.05 cm−1) a reference spectrum is hardly needed; telluric lines are immediately seen sharper than stellar ones.26

H. F. Wishina, Sci. Technol. Ser.21, Am. Astronaut. Soc., Tarzana, Cal. (1972), p. 347.

M. Cuisenier, Thèse, Université de Paris XI (1974).

D. W. Burr, Design and Construction of Large Steerable Aerials, IEE Conference Publication21, 84 (1966).

G. Neugebauer, R. Leighton, N69–37993, NTIS, U.S. Department of Commerce.

However, for the detection of interstellar lines, the full instrumental resolution of our system17 (0.01 cm−1) is required. A particularly interesting problem would have been searching for interstellar CH4 (suggested by G. Herzberg). For optimum SNR on the brightest objects with the Ge detector, some reduction of bandpass with filters is necessary because of photon noise.

These are precisely the operating conditions of heterodyne spectroscopy; while the detector is physically larger everything goes as if it had been stopped down to a ≃λ2 area. An early discussion of the relative merits of classical vs heterodyne spectroscopy will be found in Ref. 13 and more up to date ones in Ref. 14. Recent results15,16 show the heterodyne technique to have a definite future at long wavelengths (10-μm window and beyond) for extreme resolution narrowband analysis. Should very sharp lines, from coherent processes, be discovered in the ir, it would be the obvious tool especially in space since there is no turbulence spreading. However, it does not seem likely to compete with FS at shorter wavelengths and/or for wide spectral range analysis, or again when the wanted resolution is matched to a Doppler broadened linewidth. Also we note the resolutions reported in Refs. 15 and 16 are 18 MHz and 25 MHz, while operating Fourier spectrometers have 2-m maximum path difference11 or about 90-MHz resolution (depending on selected apodization); another one under construction17 goes to 20 m (9 MHz). So, in practice (and considering incoherent sources only), the orders of magnitude of resolutions are comparable.

P. Connes, in Proceedings of International School of Physics, Course 31, P. A. Miles, Ed. (Academic, New York, 1964), p. 207.

Proceedings of Workshop on Coherent Detection in Astronomy, in Space Sci. Rev.17, 5, (1975).

J. Borgman, C. D. Andriesse, R. J. Van Duinen, “Infrared Astronomy and ESO”, Internal ESO Report (1972).

P. Connes, in Theory and Observations of Normal Stellar Atmosphere, O. Gingerich, Ed. (MIT Press, Cambridge, Mass., 1969), p. 323.

P. Connes, J. Connes, J. P. Maillard, Atlas of Near Infrared and Planetary Spectra (CNRS, Paris, 1970). For a general review, see P. Connes, Ann. Rev. Astron. Astrophys. 8, 209 (1970).
[CrossRef]

P. B. Fellgett, in Optical Instruments and Technology, J. Home Dickson, Ed. (Oriel Press, Boston, Mass., 1969), p. 475.

L. Mertz, Optical Instruments and Technology, J. Home Dickson, Ed. (Oriel Press, Boston, Mass., (1969), p. 507.

The Authorized Version of the Bible, Genesis, 11, King James I edition London (1611).

“Ado” is normally rendered into French as “bruit” (noise).

All small mirrors from M3 to M9 are maintained in a stream of dry filtered laboratory air by keeping the enclosure slightly above atmospheric pressure. M1 and M2 alone are in the outdoor atmosphere and have overcoated aluminum layers. Note that a four mirror relay system was needed at Palomar.17

A comparable development has taken place in the far ir. A new Josephson junction bolometer22 gives a NEP as small as the one of the doped germanium bolometer, but with a greater sensitive area. As a direct consequence, Richards is proposing23 a low accuracy balloon borne collector for sky survey work.

This device includes an f/0.9 parabolic mirror giving an image spread less than 0.1 mm and an aplanetic strontium titanate spherical lens on which the PbS cell is deposited; it gives a demagnification factor n2 = 5, so aberrations are negligible for 0.1-mm cells. An accurate high aperture condenser actually relaxes collector tolerances and is an essential component of the whole system.

R C A Corporation, Montreal, Canada.

An additional focusing error signal may be produced from the same set of detectors at the cost of losing half of the light. Let us put in the plane of the final mosaic image at L2 a Foucault grid with equal blank and opaque spaces. If oscillated by half of a mosaic element diameter, it unmasks alternately the right and left (or upper and lower) halves of each mirror. Any induced modulation at the same frequency in ΔXΔY means the image CG is oscillated; demodulation gives a dc output proportional to focusing error and again independent of image size or brightness. Even if servo focusing is not needed, this (untried) scheme should provide better initial focusing than visual tests.

Type S1-1930, Airfloat Corp., P.O. Box 300 C, Decatur, Ill.

We thank the Laboratoire des Prototypes du CNRS for making the cell and mounting system.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (18)

Fig. 1
Fig. 1

Association of collector, interferometer, and detector.

Fig. 2
Fig. 2

Color indices V-K, V-J for main sequence stars from Ref 30. Same curves when read against right-hand K,J scales give visual magnitudes of mk = +4 and mj = 4.75 stars, observable at 2.2 μm and 1.25 μm with MELW = 10−2 cm−1 or δσ = 0.5 cm−1 and SNR = 50 in 3 h with 4-m collector. Figure also presents a crude histogram giving spectral distribution of identified objects in Two Micron Survey (plotted from a few pages only).

Fig. 3
Fig. 3

Over-all view of optical system.

Fig. 4
Fig. 4

Front view of primary mosaic. Collecting area is 13 m2, i.e., that of a 4.06-m diam mirror with zero central obstruction

Fig. 5
Fig. 5

Simplified view of collector in a plane perpendicular to (left) and parallel to (right) the horizontal axis: A, steel tube azimuth pivoting frame; B1, Dexion elevation tilting frame; B2 (dashed), secondary structure supported by air bag system E; C, aluminum tube frame supporting M2; P, weight supporting air pads; D, central bearing; MA, TA, MZ, TZ azimuth and elevation motors and transmitters; R, image rotator; F, finder.

Fig. 6
Fig. 6

Photographic image test at center of curvature for three mirrors A,B,C. Horizontally: three different focal settings; vertically: three different exposures. An angular scale is given; results would be identical at the focus with a stellar source.

Fig. 7
Fig. 7

Photoelectric image test at center of curvature. Ratio of flux Φ through circular diaphragm of angular diameter to total flux Φ0 is given for mirrors A,B,C and the sum of all mirrors.

Fig. 8
Fig. 8

Image size distribution (from same photoelectric measurements). The number N of mirrors giving 50% or 75% flux within an e diameter circle is given for 1-sec of arc bins. Lower: focal length distribution, 1 mm bins.

Fig. 9
Fig. 9

Mosaic mirror mounting system. The cell is made with four welded L shaped steel pieces and the mirror held by small rubber pads. Cell motion is guided by three Teflon washers sliding on stainless steel studs; three precision screws with small dc motors act on the back. Weight is relieved by two air bags a, b in which pressure varies according to sinZ and cosZ. Bag a (truly a Foucault bladder) prevents mirror flexure, while b mostly relieves the defining studs and reduces solid friction. Between mirror and bag a, a flexible corrugated plastic sheet permits air circulation; a heating resistor is incorporated to prevent dew formation.

Fig. 10
Fig. 10

Response of mirror on test stand to artifical star at center of curvature, the position of which is square wave modulated with 15-sec of arc amplitude. The dc error signal is presented. After ≃10-sec residual error is less than 1 sec of arc.

Fig. 11
Fig. 11

Fast guiding and image detection system. Off-axis angles are exaggerated. The M13,14,15,16 system is anyway free of coma and spherical aberration.

Fig. 12
Fig. 12

Collector, fast guider, and mosaic mirror response to 1-min of arc step displacement of artificial star (at infinity) in front of mosaic M1. Collector response shows frame resonances. “Fast” guider response is relatively slow; the 5-msec one of Ref. 17 should be considered to evaluate ultimate performance. Mosaic mirror response has been slowed down (compared to Fig. 10) by filters; an even slower response is desirable.

Fig. 13
Fig. 13

Simultaneous recordings of ΔX, ΔY error signals from a star while tracking under average turbulence and wind conditions without (left) and with (right) fast guiding.

Fig. 14
Fig. 14

Stellar image flux within an aperture of increasing diameter. The sum of all mirrors curve from Fig. 6 is reproduced for comparison.

Fig. 15
Fig. 15

Stellar images at coudé focus without (left) and with (right) the servos operating. Pictures are high contrast and much overexposed to show full image size. One mirror is still completely off at right.

Fig. 16
Fig. 16

General view of Meudon collector poining SW. Unidentified vegetables at left are still being kept at bay by spurious display of activity. See cover of issue.

Fig. 17
Fig. 17

Gregory mosaic telescope with field lens at prime focus.

Fig. 18
Fig. 18

(Communicated by G. Lemaitre.) Twyman-Green interferogram of concave stainless steel mirror (Φ = 9 cm). Construction is shown below. The mirror was elastically distorted by a system of four forces (arrows) and spherically polished with R = 2.7 m. Interferogram shows distorsion with respect to original sphere (λ = 0.6328 μm) after release of the strains.

Tables (1)

Tables Icon

Table I Minimum Detectable Equivalent Line Width and Wavenumber Resolution for SNR = 50 as a Function of K Magnitude (4-m collector, 3-h observing)a

Metrics