Abstract

An achromatic optical system can be made using three holographic optical elements. A very simple design scheme is presented, and the properties of the system are discussed.

© 1977 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. H. Katyl, Appl. Opt. 11, 1241 (1972).
    [CrossRef] [PubMed]
  2. J. N. Latta, Appl. Opt. 11, 1686 (1972).
    [CrossRef] [PubMed]
  3. S. J. Bennett, Appl. Opt. 15, 542 (1976).
    [CrossRef] [PubMed]
  4. W. Smith, Modern Optical Engineering (McGraw-Hill, New York, 1966).

1976

1972

Bennett, S. J.

Katyl, R. H.

Latta, J. N.

Smith, W.

W. Smith, Modern Optical Engineering (McGraw-Hill, New York, 1966).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

Achromatic triplet (y2 = y3 = −¼, u3 = 1).

Fig. 2
Fig. 2

Achromatic triplet lens imaging system.

Equations (21)

Equations on this page are rendered with MathJax. Learn more.

y 2 = 1 - ϕ 1 l 1 ,
u 2 = ϕ 1 + y 2 ϕ 2 ,
y 3 = y 2 - u 2 l 2 ,
u 3 = u 2 + y 3 ϕ 3 ,
u 3 λ = 0.
y 3 λ = 0.
ϕ 1 = u 3 ( y 2 - y 3 1 - y 3 - y 2 1 - y 2 ) ,
l 1 = 1 - y 2 ϕ 1 ,
ϕ 2 = u 3 1 - y 2 ,
l 2 = 1 - y 3 u 3 ,
ϕ 3 = u 3 1 - y 2 y 3 ( 1 - y 3 ) .
y ¯ 1 = 1 + l 1 ( 1 / l 2 - ϕ 2 ) .
PLC = i = 1 3 ϕ i y i y ¯ i
= ( 1 + u 3 ϕ 1 y 3 - y 2 1 - y 3 ) ϕ 1 + y 2 u 3 1 - y 2 = 0.
1 l 1 = - u 3 [ + y 2 2 ( 1 - y 2 ) 2 + y 3 1 - y 3 ] .
u 3 > 0 ,
y 3 < 0 ,
( y 2 1 - y 2 ) 2 < - y 3 1 - y 3 .
u 3 < 0 ,
y 3 > 1 ,
( y 2 1 - y 2 ) 2 > - y 3 1 - y 3 .

Metrics