Abstract

This paper presents a fabrication method and image transmission characteristics of a plastic focusing fiber which is flexible and has a nearly parabolic refractive index distribution. A new fabrication method is given, and the optimum control of index profile has been attained in order to reduce the aberration for imaging. A prototype fiber scope with TV monitor using the plastic fiber was made. Resolving power of 5–6 l/mm was shown to be attainable for fibers 3 mm in diameter and 150 mm in length.

© 1977 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. A. J. Marcatili, Bell Syst. Tech. J. 43, 2887 (1964).
  2. K. Iga, S. Hata, Y. Kato, H. Fukuyo, Jpn. J. Appl. Phys. 13, 79 (1974).
    [CrossRef]
  3. Y. Aoki, M. Suzuki, IEEE Trans. Microwave Theory Tech. MTT-15, 1 (1967).
  4. Y. Suematsu, K. Iga, S. Ito, IEEE Trans. , Microwave Theory Tech. MTT-14, 657 (1966).
    [CrossRef]
  5. T. Uchida, M. Furukawa, I. Kitano, K. Koizumi, H. Matsumura, IEEE J. Quantum Electron. QE-6, 606 (1970).
    [CrossRef]
  6. Y. Ohtsuka, Appl. Phys. Lett. 23, 247 (1973).
    [CrossRef]
  7. K. Iga, K. Yokomori, T. Sakayori, Appl. Phys. Lett. 26, 578 (1975).
    [CrossRef]
  8. K. Iga, N. Yamamoto, Y. Matsuura, in CLEOS, 25–27 May 1976, Digest of Technical Papers (Optical Society of America, Washington, D.C., 1976), paper WD9.
  9. Y. Ohtsuka, T. Senga, H. Yasuda, Appl. Phys. Lett. 25, 659 (1974).
    [CrossRef]
  10. I. Adachi, Minolta, Ltd., private communications (1976).
  11. K. Iga, unpublished.
  12. K. Iga, K. Yokomori, Trans. IECE Jpn. 58-C, 283 (1975).

1975

K. Iga, K. Yokomori, T. Sakayori, Appl. Phys. Lett. 26, 578 (1975).
[CrossRef]

K. Iga, K. Yokomori, Trans. IECE Jpn. 58-C, 283 (1975).

1974

Y. Ohtsuka, T. Senga, H. Yasuda, Appl. Phys. Lett. 25, 659 (1974).
[CrossRef]

K. Iga, S. Hata, Y. Kato, H. Fukuyo, Jpn. J. Appl. Phys. 13, 79 (1974).
[CrossRef]

1973

Y. Ohtsuka, Appl. Phys. Lett. 23, 247 (1973).
[CrossRef]

1970

T. Uchida, M. Furukawa, I. Kitano, K. Koizumi, H. Matsumura, IEEE J. Quantum Electron. QE-6, 606 (1970).
[CrossRef]

1967

Y. Aoki, M. Suzuki, IEEE Trans. Microwave Theory Tech. MTT-15, 1 (1967).

1966

Y. Suematsu, K. Iga, S. Ito, IEEE Trans. , Microwave Theory Tech. MTT-14, 657 (1966).
[CrossRef]

1964

E. A. J. Marcatili, Bell Syst. Tech. J. 43, 2887 (1964).

Adachi, I.

I. Adachi, Minolta, Ltd., private communications (1976).

Aoki, Y.

Y. Aoki, M. Suzuki, IEEE Trans. Microwave Theory Tech. MTT-15, 1 (1967).

Fukuyo, H.

K. Iga, S. Hata, Y. Kato, H. Fukuyo, Jpn. J. Appl. Phys. 13, 79 (1974).
[CrossRef]

Furukawa, M.

T. Uchida, M. Furukawa, I. Kitano, K. Koizumi, H. Matsumura, IEEE J. Quantum Electron. QE-6, 606 (1970).
[CrossRef]

Hata, S.

K. Iga, S. Hata, Y. Kato, H. Fukuyo, Jpn. J. Appl. Phys. 13, 79 (1974).
[CrossRef]

Iga, K.

K. Iga, K. Yokomori, T. Sakayori, Appl. Phys. Lett. 26, 578 (1975).
[CrossRef]

K. Iga, K. Yokomori, Trans. IECE Jpn. 58-C, 283 (1975).

K. Iga, S. Hata, Y. Kato, H. Fukuyo, Jpn. J. Appl. Phys. 13, 79 (1974).
[CrossRef]

Y. Suematsu, K. Iga, S. Ito, IEEE Trans. , Microwave Theory Tech. MTT-14, 657 (1966).
[CrossRef]

K. Iga, unpublished.

K. Iga, N. Yamamoto, Y. Matsuura, in CLEOS, 25–27 May 1976, Digest of Technical Papers (Optical Society of America, Washington, D.C., 1976), paper WD9.

Ito, S.

Y. Suematsu, K. Iga, S. Ito, IEEE Trans. , Microwave Theory Tech. MTT-14, 657 (1966).
[CrossRef]

Kato, Y.

K. Iga, S. Hata, Y. Kato, H. Fukuyo, Jpn. J. Appl. Phys. 13, 79 (1974).
[CrossRef]

Kitano, I.

T. Uchida, M. Furukawa, I. Kitano, K. Koizumi, H. Matsumura, IEEE J. Quantum Electron. QE-6, 606 (1970).
[CrossRef]

Koizumi, K.

T. Uchida, M. Furukawa, I. Kitano, K. Koizumi, H. Matsumura, IEEE J. Quantum Electron. QE-6, 606 (1970).
[CrossRef]

Marcatili, E. A. J.

E. A. J. Marcatili, Bell Syst. Tech. J. 43, 2887 (1964).

Matsumura, H.

T. Uchida, M. Furukawa, I. Kitano, K. Koizumi, H. Matsumura, IEEE J. Quantum Electron. QE-6, 606 (1970).
[CrossRef]

Matsuura, Y.

K. Iga, N. Yamamoto, Y. Matsuura, in CLEOS, 25–27 May 1976, Digest of Technical Papers (Optical Society of America, Washington, D.C., 1976), paper WD9.

Ohtsuka, Y.

Y. Ohtsuka, T. Senga, H. Yasuda, Appl. Phys. Lett. 25, 659 (1974).
[CrossRef]

Y. Ohtsuka, Appl. Phys. Lett. 23, 247 (1973).
[CrossRef]

Sakayori, T.

K. Iga, K. Yokomori, T. Sakayori, Appl. Phys. Lett. 26, 578 (1975).
[CrossRef]

Senga, T.

Y. Ohtsuka, T. Senga, H. Yasuda, Appl. Phys. Lett. 25, 659 (1974).
[CrossRef]

Suematsu, Y.

Y. Suematsu, K. Iga, S. Ito, IEEE Trans. , Microwave Theory Tech. MTT-14, 657 (1966).
[CrossRef]

Suzuki, M.

Y. Aoki, M. Suzuki, IEEE Trans. Microwave Theory Tech. MTT-15, 1 (1967).

Uchida, T.

T. Uchida, M. Furukawa, I. Kitano, K. Koizumi, H. Matsumura, IEEE J. Quantum Electron. QE-6, 606 (1970).
[CrossRef]

Yamamoto, N.

K. Iga, N. Yamamoto, Y. Matsuura, in CLEOS, 25–27 May 1976, Digest of Technical Papers (Optical Society of America, Washington, D.C., 1976), paper WD9.

Yasuda, H.

Y. Ohtsuka, T. Senga, H. Yasuda, Appl. Phys. Lett. 25, 659 (1974).
[CrossRef]

Yokomori, K.

K. Iga, K. Yokomori, Trans. IECE Jpn. 58-C, 283 (1975).

K. Iga, K. Yokomori, T. Sakayori, Appl. Phys. Lett. 26, 578 (1975).
[CrossRef]

Appl. Phys. Lett.

Y. Ohtsuka, Appl. Phys. Lett. 23, 247 (1973).
[CrossRef]

K. Iga, K. Yokomori, T. Sakayori, Appl. Phys. Lett. 26, 578 (1975).
[CrossRef]

Y. Ohtsuka, T. Senga, H. Yasuda, Appl. Phys. Lett. 25, 659 (1974).
[CrossRef]

Bell Syst. Tech. J.

E. A. J. Marcatili, Bell Syst. Tech. J. 43, 2887 (1964).

IEEE J. Quantum Electron.

T. Uchida, M. Furukawa, I. Kitano, K. Koizumi, H. Matsumura, IEEE J. Quantum Electron. QE-6, 606 (1970).
[CrossRef]

IEEE Trans. , Microwave Theory Tech.

Y. Suematsu, K. Iga, S. Ito, IEEE Trans. , Microwave Theory Tech. MTT-14, 657 (1966).
[CrossRef]

IEEE Trans. Microwave Theory Tech.

Y. Aoki, M. Suzuki, IEEE Trans. Microwave Theory Tech. MTT-15, 1 (1967).

Jpn. J. Appl. Phys.

K. Iga, S. Hata, Y. Kato, H. Fukuyo, Jpn. J. Appl. Phys. 13, 79 (1974).
[CrossRef]

Trans. IECE Jpn.

K. Iga, K. Yokomori, Trans. IECE Jpn. 58-C, 283 (1975).

Other

I. Adachi, Minolta, Ltd., private communications (1976).

K. Iga, unpublished.

K. Iga, N. Yamamoto, Y. Matsuura, in CLEOS, 25–27 May 1976, Digest of Technical Papers (Optical Society of America, Washington, D.C., 1976), paper WD9.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (19)

Fig. 1
Fig. 1

Imaging properties of focusing fiber. The light rays are transmitted with sinusoidal trajectories with pitch 2π/g.

Fig. 2
Fig. 2

The process of fabrication of plastic focusing fibers.

Fig. 3
Fig. 3

The sketch of the equipment for reforming the thick polypropylene tube which was used as a mold in the fabrication of a soft mother rod with higher refractive index.

Fig. 4
Fig. 4

Refractive index distribution coefficients as functions of the diffusion parameter DT2/r02.

Fig. 5
Fig. 5

Measured temperatures t2 of lower-index manomer vs diffusion time T2.

Fig. 6
Fig. 6

Second-order coefficient g of a plastic focusing fiber prepared by the repeated diffusion method vs diffusion time T2. Experimental results are indicated by dots.

Fig. 7
Fig. 7

Transverse differential interferometry. A fiber sample sunken in matching oil is transversely put into a light path; the wavefront W2 sheared by the quantity s is interfered with the wavefront W1.

Fig. 8
Fig. 8

Cross section of a fiber rod. The light ray passing through AB is interfered with that through AB′.

Fig. 9
Fig. 9

Differentiated interference pattern associated with a round plastic fiber sample.

Fig. 10
Fig. 10

Profile of mean refractive index obtained by averaging the refractive index distribution in the y direction. The transverse axis x/a0 is a distance from the center axis of the fiber sample normalized by a0.

Fig. 11
Fig. 11

Thin plate prepared aiming at more precise measurement of the refractive index distribution of plastic focusing fibers.

Fig. 12
Fig. 12

Differentiated interference pattern associated with the thin plate which was prepared by slicing a round fiber sample along the center axis.

Fig. 13
Fig. 13

Profile of refractive index measured using a thin plate. The transverse axis x/a0 is a normalized distance from the central axis of the fiber sample.

Fig. 14
Fig. 14

System for measuring resolving power of plastic focusing fibers.

Fig. 15
Fig. 15

Observed image of Ronchi grating (12 l/mm) by the use of a plastic focusing fiber 25 mm long.

Fig. 16
Fig. 16

Arrangements of plastic focusing fibers for imaging.

Fig. 17
Fig. 17

Imaging systems using plastic focusing fiber.

Fig. 18
Fig. 18

Observed image of letters 170 μm × 170 μm in size by using a 25-mm long fiber obtained from DAI-MMA diffusion.

Fig. 19
Fig. 19

TV monitoring system using plastic focusing fiber.

Tables (2)

Tables Icon

Table I Plastic Materials for Focusing Fibers

Tables Icon

Table II Present Status of Plastic Focusing Fiber

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

n 2 ( r ) = n 2 ( 0 ) [ 1 - ( g r ) 2 + h 4 ( g r ) 4 + h 6 ( g r ) 6 + ] ( r a ) = n c 2 ,             ( r > a ) ,
g ( 2 Δ ) 1 / 2 / a ,
Δ u = 153 g n 3 ( 0 ) [ 1 + g b ] h 4 - 2 / 3 ] - 1 ,
[ n 1 / ( n 1 - n 2 ) ] 1 / 2 g r 0 = [ - 2 I 2 ( D T 2 / r 0 2 ) ] 1 / 2 ,
[ ( n 1 - n 2 ) / n 1 ] k - 1 h 2 k = I 2 k ( D T 2 / r 0 2 ) 2 k - 1 [ - I 2 ( D T 2 / r 0 2 ) ] k ( k = 2 , 3 ) ,
I 2 k ( D T 2 / r 0 2 ) = ( - 1 ) k 2 2 k ( k ! ) 2 m = 1 2 j 0 m 2 k - 1 J 1 ( j 0 m ) exp [ - j 0 m 2 ( D T 2 / r 0 2 ) ] ,
D = 0.221 ( n 1 - n 2 ) / ( n 1 T 2 g max 2 ) .
D ¯ = 2.8 × 10 - 6 ( cm 2 / sec ) ,
n ( 0 ) = 1.545             and            n ( a ) = 1.515 ; ,
Δ u 8 ( 1 / mm ) ,

Metrics