Abstract

Mode conversion at a splice was measured. Even the best splice, whose transmission loss was less than 0.01 dB, caused a mode conversion equaling about 11% of the total power. Spliced fiber transmission characteristics were influenced by the splicing conditions. To avoid deviations in characteristics due to splices a simple and effective mode scrambler was fabricated. Its insertion loss was less than 0.3 dB for a laser diode. Each mode’s output waveform was found to be the same as the total output waveform.

© 1977 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Ito, S. Machida, T. Ikegami, S. Ohara, Electron. Lett. 11, 375 (1975).
    [CrossRef]
  2. L. G. Cohen, H. M. Presby, Appl. Opt. 14, 1361 (1975).
    [CrossRef] [PubMed]
  3. M. Ikeda, A. Sugimura, T. Ikegami, Appl. Opt. 15, 2116 (1976).
    [CrossRef] [PubMed]
  4. T. Ozeki, T. Ito, T. Tamura, in CLEA 1975 Digest of Technical Papers (Optical Society of America, Washington, D.C., 1975), paper 19.4.
  5. J. E. Midwinter, in OSA 1975 Optical Fiber Transmission Digest of Technical Papers (Optical Society of America, Washington, D.C.1975), post deadline paper PD3-1.
  6. M. Tateda, M. Ikeda, Appl. Opt. 15, 2308 (1976).
    [CrossRef] [PubMed]
  7. M. Ikeda, M. Tateda, H. Yoshikiyo, Appl. Opt. 14, 814 (1975).
    [CrossRef] [PubMed]
  8. D. L. Bisbee, Bell. Syst. Tech. J. 50, 3153 (1971).

1976 (2)

1975 (3)

1971 (1)

D. L. Bisbee, Bell. Syst. Tech. J. 50, 3153 (1971).

Bisbee, D. L.

D. L. Bisbee, Bell. Syst. Tech. J. 50, 3153 (1971).

Cohen, L. G.

Ikeda, M.

Ikegami, T.

M. Ikeda, A. Sugimura, T. Ikegami, Appl. Opt. 15, 2116 (1976).
[CrossRef] [PubMed]

T. Ito, S. Machida, T. Ikegami, S. Ohara, Electron. Lett. 11, 375 (1975).
[CrossRef]

Ito, T.

T. Ito, S. Machida, T. Ikegami, S. Ohara, Electron. Lett. 11, 375 (1975).
[CrossRef]

T. Ozeki, T. Ito, T. Tamura, in CLEA 1975 Digest of Technical Papers (Optical Society of America, Washington, D.C., 1975), paper 19.4.

Machida, S.

T. Ito, S. Machida, T. Ikegami, S. Ohara, Electron. Lett. 11, 375 (1975).
[CrossRef]

Midwinter, J. E.

J. E. Midwinter, in OSA 1975 Optical Fiber Transmission Digest of Technical Papers (Optical Society of America, Washington, D.C.1975), post deadline paper PD3-1.

Ohara, S.

T. Ito, S. Machida, T. Ikegami, S. Ohara, Electron. Lett. 11, 375 (1975).
[CrossRef]

Ozeki, T.

T. Ozeki, T. Ito, T. Tamura, in CLEA 1975 Digest of Technical Papers (Optical Society of America, Washington, D.C., 1975), paper 19.4.

Presby, H. M.

Sugimura, A.

Tamura, T.

T. Ozeki, T. Ito, T. Tamura, in CLEA 1975 Digest of Technical Papers (Optical Society of America, Washington, D.C., 1975), paper 19.4.

Tateda, M.

Yoshikiyo, H.

Appl. Opt. (4)

Bell. Syst. Tech. J. (1)

D. L. Bisbee, Bell. Syst. Tech. J. 50, 3153 (1971).

Electron. Lett. (1)

T. Ito, S. Machida, T. Ikegami, S. Ohara, Electron. Lett. 11, 375 (1975).
[CrossRef]

Other (2)

T. Ozeki, T. Ito, T. Tamura, in CLEA 1975 Digest of Technical Papers (Optical Society of America, Washington, D.C., 1975), paper 19.4.

J. E. Midwinter, in OSA 1975 Optical Fiber Transmission Digest of Technical Papers (Optical Society of America, Washington, D.C.1975), post deadline paper PD3-1.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1

Measuring setup.

Fig. 2
Fig. 2

Output waveforms for each mode group after 640 m. Number represents the mode group separated by propagating angle.

Fig. 3
Fig. 3

Scanning electron beam microscope photograph of the broken end. Its core and cladding diameters are 100 μm and 140 μm, respectively.

Fig. 4
Fig. 4

Output waveforms of each mode group after splicing a 50-cm length fiber. The solid line and the dashed line represent the waveform without and with matching oil, respectively.

Fig. 5
Fig. 5

Total output waveforms after 640 m (solid line) and after splice or with mode scrambler. Waveform peaks adjust one another.

Fig. 6
Fig. 6

Change in total output waveform caused by dropping the matching oil at the splice. The shape is the same, except for the amplitude.

Fig. 7
Fig. 7

Mode power distribution represented by the ratio to total power.

Fig. 8
Fig. 8

Sketch of the waveforms before (f1) and after (f2) the mode conversion. The mode powers in the area A0, A1, A2, and A3 represent no change power, inflow power from lower order modes, outflow power, and inflow power from higher order modes, respectively.

Fig. 9
Fig. 9

Mode conversion quantity at a splice.

Fig. 10
Fig. 10

Schematic diagram of the mode scrambler.

Fig. 11
Fig. 11

Mode scrambler photograph.

Fig. 12
Fig. 12

Output waveforms of each mode group with mode scrambler.

Fig. 13
Fig. 13

Mode conversion quantity with mode scrambler. The abscissa should read: Propagating angle θ (deg).

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

τ ( θ ) = n 1 L [ 1 / cos θ - 1 ] / c L θ 2 / 2 c n 1 ,

Metrics