Abstract

A compact optical data processor is described that employs holographic reflective lenses. The processor is inexpensive and requires one-half of the length of the optical bench as that required for using glass lenses. The fabrication of the holographic lenses is described, and the results of optical processing reported. The results show that an inexpensive data processor employing holographic lenses is a feasible project. The processor may find use for onboard optical processing on spacecrafts and satellites. The most distinguishing characteristic of such a processor is its extreme light weight. The angular alignment tolerances for holographic lenses are very low. The processor must, therefore, be made rugged, designed, and mounted to withstand vibrations, shocks, and other environmental problems associated with spacecrafts and satellites.

© 1977 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. S. Husain-Abidi, in “Holography and Optical Filtering,” NASA Report SP-299 (U.S. Government Printing Office, Washington, D.C.
  2. G. D. Mintz, D. K. Morland, W. M. Boerner, Appl. Opt. 14, 564 (1975).
    [Crossref] [PubMed]
  3. A. K. Richter, F. P. Carlson, Appl. Opt. 13, 2924 (1974); H. R. Manjunath, S. V. Pappu, Appl. Opt. 14, 2562 (1975); Appl. Opt. 15, April (1976).
    [Crossref] [PubMed]
  4. A. K. Rigler, J. Opt. Soc. Am. 55, 1693 (1965).
    [Crossref]
  5. P. C. Mehta, Nouv. Rev. Opt. 6, 179 (1975).
    [Crossref]
  6. E. B. Champagne, N. G. Massey, Appl. Opt. 8, 1879 (1969).
    [Crossref] [PubMed]
  7. J. T. Winthrop, C. R. Worthington, J. Opt. Soc. Am. 56, 1362 (1966); Phys. Lett. 15, 124 (1965).
    [Crossref]
  8. R. J. Collier, C. B. Burkhardt, C. H. Lin, Optical Holography (Academic, New York, 1971), pp. 287.
  9. M. K. Kurtz, N. Balasubramanian, W. H. Stevenson, “Study of Potential Application of Holographic Techniques to Mapping,” Final Technical Report, U.S. Army Engineer Topographic Laboratories, ETL-CR-71-17 (October, 1971), p. 51.
  10. D. H. R. Vilkomerson, D. Bostwick, Appl. Opt. 6, 1270 (1967).
    [Crossref] [PubMed]
  11. E. P. Martz, Appl. Opt. 2, 43 (1963).
    [Crossref]
  12. N. Jensen, Optical and Photographic Reconnaissance Systems (Wiley, New York, 1968).
  13. E. B. Champagne, J. Opt. Soc. Am. 57, 51 (1967).
    [Crossref]
  14. J. N. Latta, Appl. Opt. 10, 599, 609, 2698 (1971).
    [Crossref] [PubMed]
  15. J. N. Latta, Appl. Opt. 10, 666 (1971).
    [Crossref] [PubMed]
  16. P. C. Mehta, Opt. Acta 21, 1005 (1974).
    [Crossref]
  17. H. Kiemle, in Optical and Acoustical Holography, E. Camatini, Ed. (Plenum, New York, 1972), p. 209.
    [Crossref]
  18. A. Graube, Appl. Opt. 13, 2942 (1974).
    [Crossref] [PubMed]
  19. For schematic diagram of optical processor employing glass lenses, see, for example, H. Lipson, Optical Transforms (Academic, New York, 1972).
  20. Ref. 8, p. 564.
  21. Ref. 8, p. 261.
  22. T. A. Shankoff, Appl. Opt. 7, 2101 (1968).
    [Crossref] [PubMed]

1975 (2)

1974 (3)

1971 (2)

J. N. Latta, Appl. Opt. 10, 599, 609, 2698 (1971).
[Crossref] [PubMed]

J. N. Latta, Appl. Opt. 10, 666 (1971).
[Crossref] [PubMed]

1969 (1)

1968 (1)

1967 (2)

1966 (1)

1965 (1)

1963 (1)

E. P. Martz, Appl. Opt. 2, 43 (1963).
[Crossref]

Balasubramanian, N.

M. K. Kurtz, N. Balasubramanian, W. H. Stevenson, “Study of Potential Application of Holographic Techniques to Mapping,” Final Technical Report, U.S. Army Engineer Topographic Laboratories, ETL-CR-71-17 (October, 1971), p. 51.

Boerner, W. M.

Bostwick, D.

Burkhardt, C. B.

R. J. Collier, C. B. Burkhardt, C. H. Lin, Optical Holography (Academic, New York, 1971), pp. 287.

Carlson, F. P.

Champagne, E. B.

Collier, R. J.

R. J. Collier, C. B. Burkhardt, C. H. Lin, Optical Holography (Academic, New York, 1971), pp. 287.

Graube, A.

Husain-Abidi, A. S.

A. S. Husain-Abidi, in “Holography and Optical Filtering,” NASA Report SP-299 (U.S. Government Printing Office, Washington, D.C.

Jensen, N.

N. Jensen, Optical and Photographic Reconnaissance Systems (Wiley, New York, 1968).

Kiemle, H.

H. Kiemle, in Optical and Acoustical Holography, E. Camatini, Ed. (Plenum, New York, 1972), p. 209.
[Crossref]

Kurtz, M. K.

M. K. Kurtz, N. Balasubramanian, W. H. Stevenson, “Study of Potential Application of Holographic Techniques to Mapping,” Final Technical Report, U.S. Army Engineer Topographic Laboratories, ETL-CR-71-17 (October, 1971), p. 51.

Latta, J. N.

J. N. Latta, Appl. Opt. 10, 599, 609, 2698 (1971).
[Crossref] [PubMed]

J. N. Latta, Appl. Opt. 10, 666 (1971).
[Crossref] [PubMed]

Lin, C. H.

R. J. Collier, C. B. Burkhardt, C. H. Lin, Optical Holography (Academic, New York, 1971), pp. 287.

Lipson, H.

For schematic diagram of optical processor employing glass lenses, see, for example, H. Lipson, Optical Transforms (Academic, New York, 1972).

Martz, E. P.

E. P. Martz, Appl. Opt. 2, 43 (1963).
[Crossref]

Massey, N. G.

Mehta, P. C.

P. C. Mehta, Nouv. Rev. Opt. 6, 179 (1975).
[Crossref]

P. C. Mehta, Opt. Acta 21, 1005 (1974).
[Crossref]

Mintz, G. D.

Morland, D. K.

Richter, A. K.

Rigler, A. K.

Shankoff, T. A.

Stevenson, W. H.

M. K. Kurtz, N. Balasubramanian, W. H. Stevenson, “Study of Potential Application of Holographic Techniques to Mapping,” Final Technical Report, U.S. Army Engineer Topographic Laboratories, ETL-CR-71-17 (October, 1971), p. 51.

Vilkomerson, D. H. R.

Winthrop, J. T.

Worthington, C. R.

Appl. Opt. (9)

J. Opt. Soc. Am. (3)

Nouv. Rev. Opt. (1)

P. C. Mehta, Nouv. Rev. Opt. 6, 179 (1975).
[Crossref]

Opt. Acta (1)

P. C. Mehta, Opt. Acta 21, 1005 (1974).
[Crossref]

Other (8)

H. Kiemle, in Optical and Acoustical Holography, E. Camatini, Ed. (Plenum, New York, 1972), p. 209.
[Crossref]

A. S. Husain-Abidi, in “Holography and Optical Filtering,” NASA Report SP-299 (U.S. Government Printing Office, Washington, D.C.

N. Jensen, Optical and Photographic Reconnaissance Systems (Wiley, New York, 1968).

R. J. Collier, C. B. Burkhardt, C. H. Lin, Optical Holography (Academic, New York, 1971), pp. 287.

M. K. Kurtz, N. Balasubramanian, W. H. Stevenson, “Study of Potential Application of Holographic Techniques to Mapping,” Final Technical Report, U.S. Army Engineer Topographic Laboratories, ETL-CR-71-17 (October, 1971), p. 51.

For schematic diagram of optical processor employing glass lenses, see, for example, H. Lipson, Optical Transforms (Academic, New York, 1972).

Ref. 8, p. 564.

Ref. 8, p. 261.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1

Resolution vs pinhole size for different values of f numbers. Dotted curves Eq. (2), solid curves Eq. (4) for δ0 = δr.

Fig. 2
Fig. 2

Magnitude of wavefront aberration for coma vs the deviation of the reconstruction angle Δα for f numbers 1, 2, 3, 4, and 10; αr = 15°; D = 50 mm.

Fig. 3
Fig. 3

Shearing interferogram of a holographic lens (1000-mm focal length, 30-mm aperture).

Fig. 4
Fig. 4

Response of a typical holographic lens (80-mm focal length, 50-mm aperture).

Fig. 5
Fig. 5

Enlarged part of the projected image of a resolution chart by holographic lens (80-mm focal length 50-mm aperture).

Fig. 6
Fig. 6

Fourier spectra: (a) benzene ring; (b) muslin cloth; (c) coarse duster cloth; (d) circular aperture; (e) Hindi letter shown in (f).

Fig. 7
Fig. 7

Comparison of Fourier transform spectra (a) and Fraunhofer diffraction pattern (b). Objects: one annular aperture; two annular apertures; and three annular apertures.

Fig. 8
Fig. 8

(a) Object; (b) low exposure spectrum to show the details at the center; (c) overexposed spectrum to show the extent of halos and flare light. (The ratio of intensities is ~30 dB.)

Fig. 9
Fig. 9

Schematic diagram of compact optical data processor employing holographic reflective lenses.

Fig. 10
Fig. 10

Raster elimination. (a) Object; (b) filtered image.

Fig. 11
Fig. 11

Halftone elimination: (a) object; (b) filter image; (c) spectrum.

Fig. 12
Fig. 12

Results of filtering of undesired signal from the two signals superimposed: (a) input object; (b) spectrum; (c) filtered image.

Fig. 13
Fig. 13

Contrast reversal plus directional filtering: (a) object; (b) spectrum; (c) filtered image.

Fig. 14
Fig. 14

Fourier spectra in different diffraction orders: object; first order; second order; third order; and fourth order.

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

S S δ 0 + ( 2 F λ ) / D ,
L R = 1 / ( S S ) = D / ( δ 0 D + 2 F λ ) lines / mm .
S S δ 0 + ( 2 F δ r ) / D
L R = D / ( D δ 0 + 2 F δ r ) lines / mm ,
Δ S = 0 ;
Δ C = D 3 16 F 2 ( sin α r - sin α c ) ;
Δ A = D 2 8 F ( sin 2 α c - μ sin α c sin α r + 3 sin 2 α r ) ,
C = ( 16 λ E 2 Δ C ) / ( D 3 cos α r )
A = ( 8 λ F Δ A ) / ( D 2 sin 2 α r ) .
C 7.2 × 10 - 5 rad 15 sec of arc , A 5.6 × 10 - 6 rad 1.2 sec of arc .
C = 1 λ 2 ( N 1.22 ) 2 π R 2 ,

Metrics