Abstract

Silicon nitride (Si3N4) thin film optical waveguides with propagation losses of less than 0.1 dB/cm for the TE0 mode at λ0 = 6328 Å have been successfully grown by low-pressure chemical vapor deposition. Silicon wafers 5 cm in diameter were used as substrates, and the Si3N4 was separated from the substrate by a steam-oxide SiO2 buffer layer. Propagation losses are examined for the various waveguide modes, and their dependence on waveguide parameters and wavelength are discussed and compared with exact calculations. Leakage into the silicon substrate is shown to be a major loss mechanism, especially at longer wavelengths and for higher mode numbers.

© 1977 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. K. Tien, Appl. Opt. 10, 2395 (1971).
    [CrossRef] [PubMed]
  2. J. T. Boyd, C. L. Chen, Appl. Opt. 15, 1389 (1976); J. T. Boyd, C. L. Chen, IEEE J. Quantum Electron QE-13, 282 (1977); G. E. Marx, M. Gottlieb, G. B. Brandt, IEEE J. Solid-State Circuits SC-12, 10 (1977); M. J. Rand, R. D. Standley, Appl. Opt. 11, 2482 (1972).
    [CrossRef] [PubMed]
  3. See also J. T. Boyd, C. S. Kuo, Appl. Opt. 15, 1681 (1976).
    [CrossRef]
  4. E. A. Irene, J. Electron 5, 287 (1976).
  5. J. S. Johannessen, W. E. Spicer, Y. E. Strausser, Thin Solid Films 32, 311 (1976).
    [CrossRef]
  6. F. Reizman, W. Van Gelder, Solid-State Electron. 10, 625 (1967).
    [CrossRef]
  7. H. Mori, M. Itakura, Jpn. J. Appl. Phys. 19, 1917 (1975).
    [CrossRef]
  8. D. Marcuse, Bell Syst. Tech. J. 48, 3187 (1969).

1976 (4)

1975 (1)

H. Mori, M. Itakura, Jpn. J. Appl. Phys. 19, 1917 (1975).
[CrossRef]

1971 (1)

1969 (1)

D. Marcuse, Bell Syst. Tech. J. 48, 3187 (1969).

1967 (1)

F. Reizman, W. Van Gelder, Solid-State Electron. 10, 625 (1967).
[CrossRef]

Boyd, J. T.

Chen, C. L.

Irene, E. A.

E. A. Irene, J. Electron 5, 287 (1976).

Itakura, M.

H. Mori, M. Itakura, Jpn. J. Appl. Phys. 19, 1917 (1975).
[CrossRef]

Johannessen, J. S.

J. S. Johannessen, W. E. Spicer, Y. E. Strausser, Thin Solid Films 32, 311 (1976).
[CrossRef]

Kuo, C. S.

Marcuse, D.

D. Marcuse, Bell Syst. Tech. J. 48, 3187 (1969).

Mori, H.

H. Mori, M. Itakura, Jpn. J. Appl. Phys. 19, 1917 (1975).
[CrossRef]

Reizman, F.

F. Reizman, W. Van Gelder, Solid-State Electron. 10, 625 (1967).
[CrossRef]

Spicer, W. E.

J. S. Johannessen, W. E. Spicer, Y. E. Strausser, Thin Solid Films 32, 311 (1976).
[CrossRef]

Strausser, Y. E.

J. S. Johannessen, W. E. Spicer, Y. E. Strausser, Thin Solid Films 32, 311 (1976).
[CrossRef]

Tien, P. K.

Van Gelder, W.

F. Reizman, W. Van Gelder, Solid-State Electron. 10, 625 (1967).
[CrossRef]

Appl. Opt. (3)

Bell Syst. Tech. J. (1)

D. Marcuse, Bell Syst. Tech. J. 48, 3187 (1969).

J. Electron (1)

E. A. Irene, J. Electron 5, 287 (1976).

Jpn. J. Appl. Phys. (1)

H. Mori, M. Itakura, Jpn. J. Appl. Phys. 19, 1917 (1975).
[CrossRef]

Solid-State Electron. (1)

F. Reizman, W. Van Gelder, Solid-State Electron. 10, 625 (1967).
[CrossRef]

Thin Solid Films (1)

J. S. Johannessen, W. E. Spicer, Y. E. Strausser, Thin Solid Films 32, 311 (1976).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic diagram of the Si3N4–SiO2–Si waveguide structure.

Fig. 2
Fig. 2

Propagation of the TE0 and TM0 modes in a silicon nitride waveguide. Guide thickness 3212 Å; buffer layer thickness 8165 Å; λ0 = 6328 Å. The prism coupler is visible at the left side.

Fig. 3
Fig. 3

Wavelength dependence of the measured and calculated propagation constants in a Si3N4 waveguide. Also indicated is the different guide thickness t2′ for the TE0, TM0, and TE1 modes and the wavelength-dependent refractive index of the Si3N4 layer.

Fig. 4
Fig. 4

Wavelength dependence of the attenuation of the TE1 mode. (○ = experimental points; — — = substrate radiation loss; – – – = scattering loss; – · – · – total loss). The choice of waveguide parameters is discussed in the text.

Fig. 5
Fig. 5

Illustrating the waveguide geometry used in the calculations.

Tables (2)

Tables Icon

Table I Properties of a Nominal 3212-Å thick Si3N4 Waveguide, Supported by a 8200-Å thick SiO2 Buffer Layer on Silicon, at λ = 6328 Å.a

Tables Icon

Table II Properties of a nominal 3212-Å thick Si3N4 waveguide at λ0 = 6328 Å a

Equations (17)

Equations on this page are rendered with MathJax. Learn more.

β = k 0 n p sin [ arcsin ( sin ψ / n p ) + θ c ] ,
k x 4 = ( k 0 2 n 4 2 - β 2 ) 1 / 2
k x 1 = ( β 2 - k 0 2 n 1 2 ) 1 / 2 ,
k x 2 = ( k 0 2 n 2 2 - β 2 ) 1 / 2 ,
k x 3 = ( β 2 - k 0 2 n 3 2 ) 1 / 2 ,
( k ^ x 4 + i k x 3 ) ( U + V ) + ( k ^ x 4 - i k x 3 ) ( U - V ) exp ( - 2 k x 3 t 3 ) = 0 ,
U = cos ( k x 2 t 2 ) + ( k ^ x 1 / k x 2 ) sin ( k x 2 t 2 ) ,
V = - ( k x 2 / k ^ x 3 ) sin ( k x 2 t 2 ) + ( k ^ x 1 / k ^ x 3 ) cos ( k x 2 t 2 ) ,
k ^ x 1 = { k x 1 , TE modes , ( n 2 / n 1 ) 2 k x 1 TM modes ,
k ^ x 3 = { k x 3 , TE modes , ( n 2 / n 3 ) 2 k x 3 TM modes ,
k ^ x 4 = { k x 4 TE modes , ( n 3 / n 4 ) 2 k x 4 , TM modes ,
tan ( k x 2 t 2 ) = k x 2 ( k ^ x 1 + k ^ x 3 ) k x 2 2 - k ^ x 1 k ^ x 3 ,
β = β + δ β
δ β = 2 k x 2 2 k ^ x 3 ( k ^ x 4 - i k x 3 k ^ x 4 + i k x 3 ) exp ( - 2 k x 3 t 3 ) W ,
W = β [ t 2 ( k x 2 2 + k ^ x 3 2 ) + ( k ^ x 3 / k ^ x 3 2 ) ( k x 2 2 + k x 3 2 ) + ( k ^ x 1 / k x 1 2 ) ( k x 2 2 + k ^ x 3 2 ) ( k x 1 2 + k x 2 2 ) / ( k ^ x 1 2 + k x 2 2 ) ] .
W TE = β t eff ( k x 2 2 + k x 3 2 ) ,
t eff = t 2 + 1 / k x 1 + 1 / k x 3 .

Metrics