Abstract

We have built a fully automatic ellipsometer, which is spectroscopic and of the single rotating optical component type but which avoids two serious problems encountered in rotating analyzer ellipsometers.

© 1977 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. H. Mueller, Surf. Sci. 56, 19 (1976).
    [CrossRef]
  2. D. E. Aspnes, Optical Properties of Solids–New Developments. B. O. Seraphin, Ed. (North Holland, Amsterdam, 1976).
  3. J. R. Beattie, Philos. Mag. 46, 235 (1955).
  4. D. E. Aspnes, A. A. Studna, Appl. Opt. 14, 220 (1975).
    [CrossRef] [PubMed]
  5. R. C. O’Handley, J. Opt. Soc. Am. 63, 523 (1973).
    [CrossRef]
  6. P. S. Hauge, F. H. Dill, IBM J. Res. Dev. 17, 472 (1973).
    [CrossRef]

1976 (1)

R. H. Mueller, Surf. Sci. 56, 19 (1976).
[CrossRef]

1975 (1)

1973 (2)

R. C. O’Handley, J. Opt. Soc. Am. 63, 523 (1973).
[CrossRef]

P. S. Hauge, F. H. Dill, IBM J. Res. Dev. 17, 472 (1973).
[CrossRef]

1955 (1)

J. R. Beattie, Philos. Mag. 46, 235 (1955).

Aspnes, D. E.

D. E. Aspnes, A. A. Studna, Appl. Opt. 14, 220 (1975).
[CrossRef] [PubMed]

D. E. Aspnes, Optical Properties of Solids–New Developments. B. O. Seraphin, Ed. (North Holland, Amsterdam, 1976).

Beattie, J. R.

J. R. Beattie, Philos. Mag. 46, 235 (1955).

Dill, F. H.

P. S. Hauge, F. H. Dill, IBM J. Res. Dev. 17, 472 (1973).
[CrossRef]

Hauge, P. S.

P. S. Hauge, F. H. Dill, IBM J. Res. Dev. 17, 472 (1973).
[CrossRef]

Mueller, R. H.

R. H. Mueller, Surf. Sci. 56, 19 (1976).
[CrossRef]

O’Handley, R. C.

Studna, A. A.

Appl. Opt. (1)

IBM J. Res. Dev. (1)

P. S. Hauge, F. H. Dill, IBM J. Res. Dev. 17, 472 (1973).
[CrossRef]

J. Opt. Soc. Am. (1)

Philos. Mag. (1)

J. R. Beattie, Philos. Mag. 46, 235 (1955).

Surf. Sci. (1)

R. H. Mueller, Surf. Sci. 56, 19 (1976).
[CrossRef]

Other (1)

D. E. Aspnes, Optical Properties of Solids–New Developments. B. O. Seraphin, Ed. (North Holland, Amsterdam, 1976).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic diagram of the optical system. AP are two apertures. The rest of the symbols are given in the text.

Fig. 2
Fig. 2

Schematic cross-sectional view of the rotating depolarizer assembly. The symbols are described in the text.

Fig. 3
Fig. 3

Block diagram of the electronic system.

Fig. 4
Fig. 4

Diagram illustrating the instantaneous orientation of the various polarizing components. POL is the stationary polarizer, AN is the stationary analyzer, and o and e are the polarization directions of the ordinary and extraordinary rays in the rotating calcite.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

I o = I i T o 2 r s cos ϕ + r p sin ϕ 2 ,
I e = I i T e 2 r s cos ϕ - r p sin ϕ 2 .
I ( ϕ ) = I o cos 2 ϕ + I e sin 2 ϕ .
T = ( T o + T e ) / 2 , Δ T = ( T o - T e ) / 2 , ϕ = ω t .
I ( t ) = I i 2 { T ( R s + R p 2 + R s - R p 4 ) + Δ T 2 [ R s cos 2 ω t + ( R s R p ) 1 / 2 cos Δ sin 2 ω t ] + T 4 [ ( R s - R p ) cos 4 ω t + 2 ( R s R p ) 1 / 2 cos Δ sin 4 ω t ] } .
I ( t ) = I i 2 { T ( R s + R p 2 - R s - R p 4 ) - Δ T 2 [ R p cos 2 ω t - ( R s R p ) 1 / 2 cos Δ sin 2 ω t ] - T 4 [ R s - R p ) cos 4 ω t + 2 ( R s R p ) 1 / 2 cos Δ sin 4 ω t ] } .
S I = K ( R s - R p ) / ( R s + R p ) 2 + [ ( R s - R p ) / ( R s + R p ) ] , S Q = K [ 2 ( R s R p ) 1 / 2 cos Δ ] / ( R s + R p ) 2 + [ ( R s - R p ) / ( R s + R p ) ] ) .
S I = 1 / 3 , S Q = 0.
α = R s - R p R s + R p ,             β = 2 ( R s R p ) 1 / 2 cos Δ R s + R p .
1 - sin 2 ϕ tan 2 ϕ 1 - β 1 + β + sin 2 ϕ ; 2 2 sin 2 ϕ tan 2 ϕ 1 - β 1 + β · α ( 1 - β 2 ) 1 / 2 .

Metrics