Abstract

A study was made to characterize parametrically the spectrally selective absorptance profiles of typical interference, bulk absorption, and mixed-type absorbing layers for solar–thermal conversion at temperatures to 500°C. A five parameter empirical Fermi function was used to model the spectral absorptance converted from the measured spectral reflectance. An alternative method using the Fermi model is presented for defining the ir spectral emittance profile, as scaled to the measured hemispherical total emittance.

© 1977 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Spectral selectivity of high-temperature solar absorbers

D. M. Trotter and A. J. Sievers
Appl. Opt. 19(5) 711-728 (1980)

Possible high absorptance and low emittance selective surface for high temperature solar thermal collectors

Qi-Chu Zhang, J. C. Kelly, and D. R. Mills
Appl. Opt. 30(13) 1653-1658 (1991)

Perfect selective metamaterial solar absorbers

Hao Wang and Liping Wang
Opt. Express 21(S6) A1078-A1093 (2013)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (2)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (2)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (2)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription