Abstract

The computer controlled polisher uses a small, rotating tool which travels over the workpiece surface. By accurately controlling the velocity of the tool, a prescribed amount of material may be removed at each point on the surface. The use of a small tool permits rapid figuring of aspheric surfaces for lightweighted workpieces. The computer controlled polisher was optimized with regard to tool configurations, dwell times, scanning paths, and operating parameters. The unit has successfully fabricated several different workpieces including a mirror with a 1/80-wave rms departure, where a wave is 0.6328 μm.

© 1977 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. G. Kumanin, Generation of Optical Surfaces (Focal Library, New York, 1962).
  2. W. Rupp, Appl. Opt. 4, 743 (1965).
    [CrossRef]
  3. L. S. Tsenek, Sov. J. Opt. Technol. 37, 545 (1970).
  4. Y. K. Lysyannyi, Sov. J. Opt. Technol. 41, 262 (1974).
  5. R. A. Jones, P. L. Kadakia, Appl. Opt. 7, 1477 (1968).
    [CrossRef] [PubMed]
  6. R. E. Wagner, R. R. Shannon, Appl. Opt. 13, 1683 (1974).
    [CrossRef] [PubMed]
  7. R. A. Jones, Proc. Soc. Photo. Opt. Instrum. Eng. Metal Opt. 65, 48 (1975).

1975 (1)

R. A. Jones, Proc. Soc. Photo. Opt. Instrum. Eng. Metal Opt. 65, 48 (1975).

1974 (2)

R. E. Wagner, R. R. Shannon, Appl. Opt. 13, 1683 (1974).
[CrossRef] [PubMed]

Y. K. Lysyannyi, Sov. J. Opt. Technol. 41, 262 (1974).

1970 (1)

L. S. Tsenek, Sov. J. Opt. Technol. 37, 545 (1970).

1968 (1)

1965 (1)

Jones, R. A.

R. A. Jones, Proc. Soc. Photo. Opt. Instrum. Eng. Metal Opt. 65, 48 (1975).

R. A. Jones, P. L. Kadakia, Appl. Opt. 7, 1477 (1968).
[CrossRef] [PubMed]

Kadakia, P. L.

Kumanin, K. G.

K. G. Kumanin, Generation of Optical Surfaces (Focal Library, New York, 1962).

Lysyannyi, Y. K.

Y. K. Lysyannyi, Sov. J. Opt. Technol. 41, 262 (1974).

Rupp, W.

Shannon, R. R.

Tsenek, L. S.

L. S. Tsenek, Sov. J. Opt. Technol. 37, 545 (1970).

Wagner, R. E.

Appl. Opt. (3)

Proc. Soc. Photo. Opt. Instrum. Eng. Metal Opt. (1)

R. A. Jones, Proc. Soc. Photo. Opt. Instrum. Eng. Metal Opt. 65, 48 (1975).

Sov. J. Opt. Technol. (2)

L. S. Tsenek, Sov. J. Opt. Technol. 37, 545 (1970).

Y. K. Lysyannyi, Sov. J. Opt. Technol. 41, 262 (1974).

Other (1)

K. G. Kumanin, Generation of Optical Surfaces (Focal Library, New York, 1962).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1

Computer controlled polisher.

Fig. 2
Fig. 2

Computer controlled polisher head.

Fig. 3
Fig. 3

Data analysis flow diagram.

Fig. 4
Fig. 4

Rotary tools: (a) tool configuration geometries; (b) tool removal profiles.

Fig. 5
Fig. 5

Modeled figure progress for several tool configurations.

Fig. 6
Fig. 6

Tool removal profiles for several epicyclic motion tools.

Fig. 7
Fig. 7

Modeled figure progress for several epicyclic motion tools.

Fig. 8
Fig. 8

Epicyclic tool configurations.

Fig. 9
Fig. 9

Tool removal profiles for rotary and epicyclic tools.

Fig. 10
Fig. 10

Modeled figure progress with and without profile correction.

Fig. 11
Fig. 11

Dynamic tool profiles: (a) theoretical curve; (b)–(e) experimental cases.

Fig. 12
Fig. 12

Cervit figure control experiment. Surface figure error vs

Fig. 13
Fig. 13

Cervit figure control experiment. Interferograms showing the generation of a λ/80 figure in less than 4 machine h.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

F ( x , y ) = S ( x , y ) - N · P T ( u , v ) · R ( x - u , y - v ) d u d v ,
E i = D - T i R .
T 1 = D ;             E 1 = D - D R .
T 2 = D + E 1 ;             E 2 = D - D ( 2 δ - R ) R ,
T i = T i - 1 + E i - 1 = D G i ( r ) , E i = D - D G i ( R ) R .
G i = G i - 1 + δ - G i - 1 R .
C i = ( C i - 1 2 + L · S 2 π ) 1 / 2 ; θ i = θ i - 1 + 2 L C i + C i - 1 ; if K = 1 , R i = C i ; if K 1 , R i = C i ( K 2 sin 2 θ i + cos θ i ) 1 / 2 ; X i = R i · cos θ i ; Y i = R i · sin θ i ;

Metrics