Abstract

Noncollinear acoustooptic tunable filters using TeO2 crystals are described. An anisotropic Bragg diffraction is studied applying simple design expressions to a tilt type in which an acoustic wave is launched a little off the [110] axis. Tuning property, filter bandwidth, angular aperture, required acoustic power, deflection angle, divergenceless configuration, and rapid spectrum scanning have been discussed. These filter properties have been confirmed with measurements using three kinds of filter devices: a basic type, an acoustically enhanced type, and a large angular aperture type. A 5-Å bandwidth at 4000 Å was obtained by slow scanning. A 32-Å separation at 4000 Å was observed by a rapid scanning of 0.5 msec throughout the visible region with an extremely low electric drive power.

© 1976 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. E. Harris, R. W. Wallace, J. Opt. Soc. Am. 59, 744 (1969).
    [CrossRef]
  2. R. W. Dixon, IEEE. J. Quantum Electron. QE-3, 2 (1967).
  3. S. E. Harris, S. T. K. Nieh, D. K. Winslow, Appl. Phys. Lett. 15, 325 (1969).
    [CrossRef]
  4. S. E. Harris, S. T. K. Nieh, Appl. Phys. Lett. 17, 223 (1970).
    [CrossRef]
  5. I. C. Chang, Appl. Phys. Lett. 25, 323 (1974).
    [CrossRef]
  6. J. D. Feichtner, M. Gottlieb, J. J. Conroy, 1975 IEEE/OSA Conference on Laser Engineering and Applications, Paper No. 17.6.
  7. W. Streifer, J. R. Whinnery, Appl. Phys. Lett. 17, 335 (1970).
    [CrossRef]
  8. D. J. Taylor, S. E. Harris, S. T. K. Nieh, T. W. Hansch, Appl. Phys. Lett. 19, 269 (1971).
    [CrossRef]
  9. P. Saltz, W. Streifer, IEEE J. Quantum Electron. QE-3, 893 (1972).
    [CrossRef]
  10. J. A. Kusters, D. A. Wilson, D. L. Hammond, J. Opt. Soc. Am. 64, 434 (1974).
    [CrossRef]
  11. I. C. Chang, 1973 IEEE/OSA Conference on Laser Engineering and Applications, Paper No. 7.4.
  12. N. Uchida, Y. Ohmachi, J. Appl. Phys. 40, 4692 (1969).
    [CrossRef]
  13. T. Yano, A. Watanabe, J. Appl. Phys. 45, 1243 (1974).
    [CrossRef]
  14. T. Yano, A. Watanabe, Appl. Phys. Lett. 24, 256 (1974).
    [CrossRef]
  15. N. Uchida, S. Saito, Proc. IEEE 62, 1279 (1974).
    [CrossRef]
  16. I. C. Chang, Appl. Phys. Lett. 25, 370 (1974).
    [CrossRef]
  17. A. Watanabe, T. Yano, Proc. 6th Conference on Solid State Device, Paper No. A5-4 Supplement; J. Jpn. Soc. Appl. Phys.44, 127 (1975).
  18. A. W. Warner, D. L. White, W. A. Bonner, J. Appl. Phys. 43, 4489 (1972).
    [CrossRef]
  19. T. Yano, M. Kawabuchi, A. Fukumoto, A. Watanabe, Appl. Phys. Lett. 26, 689 (1975).
    [CrossRef]
  20. N. Uchida, Phys. Rev. B4, 3736 (1971).
  21. Y. Ohmachi, N. Uchida, N. Niizeki, J. Acoust. Soc. Am. 51, 164 (1972).
    [CrossRef]
  22. E. R. Washwell, K. F. Cuff, Appl. Opt. 9, 1911 (1970).
    [PubMed]
  23. S. Singh, W. A. Bonner, L. G. Van Uitert, Phys. Lett. 38A, 407 (1972).

1975

T. Yano, M. Kawabuchi, A. Fukumoto, A. Watanabe, Appl. Phys. Lett. 26, 689 (1975).
[CrossRef]

1974

J. A. Kusters, D. A. Wilson, D. L. Hammond, J. Opt. Soc. Am. 64, 434 (1974).
[CrossRef]

T. Yano, A. Watanabe, J. Appl. Phys. 45, 1243 (1974).
[CrossRef]

T. Yano, A. Watanabe, Appl. Phys. Lett. 24, 256 (1974).
[CrossRef]

N. Uchida, S. Saito, Proc. IEEE 62, 1279 (1974).
[CrossRef]

I. C. Chang, Appl. Phys. Lett. 25, 370 (1974).
[CrossRef]

I. C. Chang, Appl. Phys. Lett. 25, 323 (1974).
[CrossRef]

1972

P. Saltz, W. Streifer, IEEE J. Quantum Electron. QE-3, 893 (1972).
[CrossRef]

A. W. Warner, D. L. White, W. A. Bonner, J. Appl. Phys. 43, 4489 (1972).
[CrossRef]

Y. Ohmachi, N. Uchida, N. Niizeki, J. Acoust. Soc. Am. 51, 164 (1972).
[CrossRef]

S. Singh, W. A. Bonner, L. G. Van Uitert, Phys. Lett. 38A, 407 (1972).

1971

N. Uchida, Phys. Rev. B4, 3736 (1971).

D. J. Taylor, S. E. Harris, S. T. K. Nieh, T. W. Hansch, Appl. Phys. Lett. 19, 269 (1971).
[CrossRef]

1970

W. Streifer, J. R. Whinnery, Appl. Phys. Lett. 17, 335 (1970).
[CrossRef]

S. E. Harris, S. T. K. Nieh, Appl. Phys. Lett. 17, 223 (1970).
[CrossRef]

E. R. Washwell, K. F. Cuff, Appl. Opt. 9, 1911 (1970).
[PubMed]

1969

S. E. Harris, S. T. K. Nieh, D. K. Winslow, Appl. Phys. Lett. 15, 325 (1969).
[CrossRef]

S. E. Harris, R. W. Wallace, J. Opt. Soc. Am. 59, 744 (1969).
[CrossRef]

N. Uchida, Y. Ohmachi, J. Appl. Phys. 40, 4692 (1969).
[CrossRef]

1967

R. W. Dixon, IEEE. J. Quantum Electron. QE-3, 2 (1967).

Bonner, W. A.

A. W. Warner, D. L. White, W. A. Bonner, J. Appl. Phys. 43, 4489 (1972).
[CrossRef]

S. Singh, W. A. Bonner, L. G. Van Uitert, Phys. Lett. 38A, 407 (1972).

Chang, I. C.

I. C. Chang, Appl. Phys. Lett. 25, 323 (1974).
[CrossRef]

I. C. Chang, Appl. Phys. Lett. 25, 370 (1974).
[CrossRef]

I. C. Chang, 1973 IEEE/OSA Conference on Laser Engineering and Applications, Paper No. 7.4.

Conroy, J. J.

J. D. Feichtner, M. Gottlieb, J. J. Conroy, 1975 IEEE/OSA Conference on Laser Engineering and Applications, Paper No. 17.6.

Cuff, K. F.

Dixon, R. W.

R. W. Dixon, IEEE. J. Quantum Electron. QE-3, 2 (1967).

Feichtner, J. D.

J. D. Feichtner, M. Gottlieb, J. J. Conroy, 1975 IEEE/OSA Conference on Laser Engineering and Applications, Paper No. 17.6.

Fukumoto, A.

T. Yano, M. Kawabuchi, A. Fukumoto, A. Watanabe, Appl. Phys. Lett. 26, 689 (1975).
[CrossRef]

Gottlieb, M.

J. D. Feichtner, M. Gottlieb, J. J. Conroy, 1975 IEEE/OSA Conference on Laser Engineering and Applications, Paper No. 17.6.

Hammond, D. L.

Hansch, T. W.

D. J. Taylor, S. E. Harris, S. T. K. Nieh, T. W. Hansch, Appl. Phys. Lett. 19, 269 (1971).
[CrossRef]

Harris, S. E.

D. J. Taylor, S. E. Harris, S. T. K. Nieh, T. W. Hansch, Appl. Phys. Lett. 19, 269 (1971).
[CrossRef]

S. E. Harris, S. T. K. Nieh, Appl. Phys. Lett. 17, 223 (1970).
[CrossRef]

S. E. Harris, R. W. Wallace, J. Opt. Soc. Am. 59, 744 (1969).
[CrossRef]

S. E. Harris, S. T. K. Nieh, D. K. Winslow, Appl. Phys. Lett. 15, 325 (1969).
[CrossRef]

Kawabuchi, M.

T. Yano, M. Kawabuchi, A. Fukumoto, A. Watanabe, Appl. Phys. Lett. 26, 689 (1975).
[CrossRef]

Kusters, J. A.

Nieh, S. T. K.

D. J. Taylor, S. E. Harris, S. T. K. Nieh, T. W. Hansch, Appl. Phys. Lett. 19, 269 (1971).
[CrossRef]

S. E. Harris, S. T. K. Nieh, Appl. Phys. Lett. 17, 223 (1970).
[CrossRef]

S. E. Harris, S. T. K. Nieh, D. K. Winslow, Appl. Phys. Lett. 15, 325 (1969).
[CrossRef]

Niizeki, N.

Y. Ohmachi, N. Uchida, N. Niizeki, J. Acoust. Soc. Am. 51, 164 (1972).
[CrossRef]

Ohmachi, Y.

Y. Ohmachi, N. Uchida, N. Niizeki, J. Acoust. Soc. Am. 51, 164 (1972).
[CrossRef]

N. Uchida, Y. Ohmachi, J. Appl. Phys. 40, 4692 (1969).
[CrossRef]

Saito, S.

N. Uchida, S. Saito, Proc. IEEE 62, 1279 (1974).
[CrossRef]

Saltz, P.

P. Saltz, W. Streifer, IEEE J. Quantum Electron. QE-3, 893 (1972).
[CrossRef]

Singh, S.

S. Singh, W. A. Bonner, L. G. Van Uitert, Phys. Lett. 38A, 407 (1972).

Streifer, W.

P. Saltz, W. Streifer, IEEE J. Quantum Electron. QE-3, 893 (1972).
[CrossRef]

W. Streifer, J. R. Whinnery, Appl. Phys. Lett. 17, 335 (1970).
[CrossRef]

Taylor, D. J.

D. J. Taylor, S. E. Harris, S. T. K. Nieh, T. W. Hansch, Appl. Phys. Lett. 19, 269 (1971).
[CrossRef]

Uchida, N.

N. Uchida, S. Saito, Proc. IEEE 62, 1279 (1974).
[CrossRef]

Y. Ohmachi, N. Uchida, N. Niizeki, J. Acoust. Soc. Am. 51, 164 (1972).
[CrossRef]

N. Uchida, Phys. Rev. B4, 3736 (1971).

N. Uchida, Y. Ohmachi, J. Appl. Phys. 40, 4692 (1969).
[CrossRef]

Van Uitert, L. G.

S. Singh, W. A. Bonner, L. G. Van Uitert, Phys. Lett. 38A, 407 (1972).

Wallace, R. W.

Warner, A. W.

A. W. Warner, D. L. White, W. A. Bonner, J. Appl. Phys. 43, 4489 (1972).
[CrossRef]

Washwell, E. R.

Watanabe, A.

T. Yano, M. Kawabuchi, A. Fukumoto, A. Watanabe, Appl. Phys. Lett. 26, 689 (1975).
[CrossRef]

T. Yano, A. Watanabe, Appl. Phys. Lett. 24, 256 (1974).
[CrossRef]

T. Yano, A. Watanabe, J. Appl. Phys. 45, 1243 (1974).
[CrossRef]

A. Watanabe, T. Yano, Proc. 6th Conference on Solid State Device, Paper No. A5-4 Supplement; J. Jpn. Soc. Appl. Phys.44, 127 (1975).

Whinnery, J. R.

W. Streifer, J. R. Whinnery, Appl. Phys. Lett. 17, 335 (1970).
[CrossRef]

White, D. L.

A. W. Warner, D. L. White, W. A. Bonner, J. Appl. Phys. 43, 4489 (1972).
[CrossRef]

Wilson, D. A.

Winslow, D. K.

S. E. Harris, S. T. K. Nieh, D. K. Winslow, Appl. Phys. Lett. 15, 325 (1969).
[CrossRef]

Yano, T.

T. Yano, M. Kawabuchi, A. Fukumoto, A. Watanabe, Appl. Phys. Lett. 26, 689 (1975).
[CrossRef]

T. Yano, A. Watanabe, J. Appl. Phys. 45, 1243 (1974).
[CrossRef]

T. Yano, A. Watanabe, Appl. Phys. Lett. 24, 256 (1974).
[CrossRef]

A. Watanabe, T. Yano, Proc. 6th Conference on Solid State Device, Paper No. A5-4 Supplement; J. Jpn. Soc. Appl. Phys.44, 127 (1975).

Appl. Opt.

Appl. Phys. Lett.

T. Yano, M. Kawabuchi, A. Fukumoto, A. Watanabe, Appl. Phys. Lett. 26, 689 (1975).
[CrossRef]

S. E. Harris, S. T. K. Nieh, D. K. Winslow, Appl. Phys. Lett. 15, 325 (1969).
[CrossRef]

S. E. Harris, S. T. K. Nieh, Appl. Phys. Lett. 17, 223 (1970).
[CrossRef]

I. C. Chang, Appl. Phys. Lett. 25, 323 (1974).
[CrossRef]

W. Streifer, J. R. Whinnery, Appl. Phys. Lett. 17, 335 (1970).
[CrossRef]

D. J. Taylor, S. E. Harris, S. T. K. Nieh, T. W. Hansch, Appl. Phys. Lett. 19, 269 (1971).
[CrossRef]

T. Yano, A. Watanabe, Appl. Phys. Lett. 24, 256 (1974).
[CrossRef]

I. C. Chang, Appl. Phys. Lett. 25, 370 (1974).
[CrossRef]

IEEE J. Quantum Electron.

P. Saltz, W. Streifer, IEEE J. Quantum Electron. QE-3, 893 (1972).
[CrossRef]

IEEE. J. Quantum Electron.

R. W. Dixon, IEEE. J. Quantum Electron. QE-3, 2 (1967).

J. Acoust. Soc. Am.

Y. Ohmachi, N. Uchida, N. Niizeki, J. Acoust. Soc. Am. 51, 164 (1972).
[CrossRef]

J. Appl. Phys.

A. W. Warner, D. L. White, W. A. Bonner, J. Appl. Phys. 43, 4489 (1972).
[CrossRef]

N. Uchida, Y. Ohmachi, J. Appl. Phys. 40, 4692 (1969).
[CrossRef]

T. Yano, A. Watanabe, J. Appl. Phys. 45, 1243 (1974).
[CrossRef]

J. Opt. Soc. Am.

Phys. Lett.

S. Singh, W. A. Bonner, L. G. Van Uitert, Phys. Lett. 38A, 407 (1972).

Phys. Rev.

N. Uchida, Phys. Rev. B4, 3736 (1971).

Proc. IEEE

N. Uchida, S. Saito, Proc. IEEE 62, 1279 (1974).
[CrossRef]

Other

A. Watanabe, T. Yano, Proc. 6th Conference on Solid State Device, Paper No. A5-4 Supplement; J. Jpn. Soc. Appl. Phys.44, 127 (1975).

I. C. Chang, 1973 IEEE/OSA Conference on Laser Engineering and Applications, Paper No. 7.4.

J. D. Feichtner, M. Gottlieb, J. J. Conroy, 1975 IEEE/OSA Conference on Laser Engineering and Applications, Paper No. 17.6.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Wave vector diagrams for acoustooptic interactions in TeO2.

Fig. 2
Fig. 2

Curves of the incident angle vs the acoustic frequency with extraordinary incident lights, (a) for various tilt angles α at λ = 550 nm, (b) for various wavelengths at α = 2°. Circles represent approximated values for λ = 550 nm.

Fig. 3
Fig. 3

A tilt configuration of TeO2 far-off-axis acoustooptic filter.

Fig. 4
Fig. 4

Tuning curves of the wavelength vs the acoustic frequency: (a) with Θi = 20°, α = 0°; (b) with Θi = 18.6°, α = 1.6°. Circles and triangles represent measured values.

Fig. 5
Fig. 5

Filter bandwidth Δλ vs optical wavelength λ for Θi = 18.6°, α = 1.6°. Circles represent measured values. The dashed line represents the filter width Δλ neglecting the optical dispersion.

Fig. 6
Fig. 6

Actual interaction length between acoustic flux and incident light inside the crystal.

Fig. 7
Fig. 7

Deflection angle from the normal direction of optical exit plane outside the crystal.

Fig. 8
Fig. 8

Typical configurations of TeO2 acoustooptic filter fabricated for experiments: (a) a basic type with Θi = 20°, α = 0°; (b) an acoustically enhanced type with Θi = 18.6°, α = 1.6°; (c) a large angular aperture type with Θi = 10.6°, α = 4.2°.

Fig. 9
Fig. 9

Acoustic frequency bandwidth for type B at 6328 Å.

Fig. 10
Fig. 10

Diffraction efficiency vs electric input power for type B at 6328 Å.

Fig. 11
Fig. 11

Spectra observed by rapid scanning. Light source is a mercury lamp. Repetition frequencies of scanning are: (a) and (b) 200 Hz (T = 5 msec); (c) 2 kHz (T = 0.5 msec); (d) 5 kHz (T = 0.2 msec).

Fig. 12
Fig. 12

Dispersion of the birefringence in TeO2. Circles and crosses show approximated and measured values, respectively.

Tables (2)

Tables Icon

Table I Physical Parameters of TeO2

Tables Icon

Table II Me(α, Θi) and Pa100 for TeO2 Noncollinear AO Filters and Typical Collinear AO Filters

Equations (33)

Equations on this page are rendered with MathJax. Learn more.

f = Δ n b ( λ ) v ( α ) λ sin 2 Θ i sin ( Θ i - α ) ,
v ( α ) = [ ( C 11 - C 12 2 cos 2 α + C 44 sin 2 α ) / ρ ] 1 / 2 ,
Δ n b ( λ ) = a ( λ - λ c ) + b ,
δ λ λ e = 1 D Δ n b n o cos 2 Θ i ,
D = 1 + Δ n b - b Δ n b λ λ - λ c
Δ λ α = 1 D λ tan ( Θ i - α ) Δ α ,
Δ λ α = 0.9 λ 2 L · Δ n b · D cos ( Θ i - α ) sin 2 Θ i .
Δ λ Θ = λ D [ 2 tan Θ i - 1 tan ( Θ i - α ) ] Δ Θ i .
Δ Θ i = n · D · Δ λ Θ λ [ 2 tan Θ i - 1 tan ( Θ i - α ) ] - 1 .
I 1 = I 0 sin 2 ( η ) ,
η = 1 2 π λ ( L H ) 1 / 2 ( n 6 p 2 ρ v 3 ) 1 / 2 ( P a ) 1 / 2 1 cos Θ .
η = π λ ( L · M e P a 2 H ) 1 / 2 [ v ( 0 ) v ( α ) ] 3 / 2 cos ( Θ s - α ) cos Θ i cos ( Θ s - Θ i ) ,
P a 100 = λ 2 2 H L · M e [ v ( α ) v ( 0 ) ] 3 [ cos ( Θ s - Θ i ) cos ( Θ s - α ) cos Θ i ] 2 .
M e ( α , Θ i ) = M e [ v ( 0 ) / v ( α ) ] 3 cos 2 Θ i .
Δ Θ d = Δ n b sin 2 Θ i / tan ( Θ i - α )
τ = [ L sin ( Θ i - α ) + R ] cos ( Θ s - α ) v ( α ) cos ( Θ s - Θ i ) ,
Δ λ s = λ 2 D sin ( Θ i - α ) v · Δ n b · sin 2 Θ i Δ f τ ,
n 1 2 ( Θ ) cos 2 Θ n o 2 ( 1 + δ ) 2 + n 1 2 ( Θ ) sin 2 Θ n e 2 = 1 ,
n 2 2 ( Θ ) cos 2 Θ n o 2 ( 1 - δ ) 2 + n 2 2 ( Θ ) sin 2 Θ n o 2 = 1 ,
k i cos Θ i + K a sin α = k d cos Θ d ,
k i sin Θ i - K a cos α = k d sin Θ d ,
v ( α ) = [ ( C 11 - C 12 2 cos 2 α + C 44 sin 2 α ) / ρ ] 1 / 2 ,
n 1 - n o n o , n e - n o n o , n 1 = n o + Δ n b sin 2 Θ i + Δ n a 2 cos 2 Θ i - 3 Δ n b 2 2 n o cos 2 Θ i · sin 2 Θ i ,
n 2 = n o - Δ n a 2 cos 2 Θ i ,
( Δ k ) 2 + k i k d ( Δ θ d ) 2 = K a 2 ,
Δ θ d = cos ( Θ i - α ) k d sin ( Θ i - α ) [ Δ k + 1 2 k d ( Δ θ d ) 2 ] ,
f = v · Δ n b λ sin 2 Θ i sin ( Θ i - α ) [ 1 + Δ n a cos 2 Θ i Δ n b sin 2 Θ i - 3 2 Δ n b n o cos 2 Θ i ] [ 1 + 1 2 Δ n b n 0 sin 2 Θ i - cos 2 ( Θ i - α ) sin 2 ( Θ i - α ) ] .
f = v · Δ n b λ sin 2 Θ i sin ( Θ i - α ) × [ 1 + Δ n a Δ n b tan 2 Θ i - Δ n b n o cos 2 Θ i + Δ n b n o tan α tan Θ i ] .
f = v · Δ n b λ sin 2 Θ i sin ( Θ i - α ) .
Δ θ d = Δ n b n o sin 2 Θ i tan ( Θ i - α ) .
f = v · Δ n b λ sin 2 Θ d sin ( Θ d - α ) [ 1 + Δ n a Δ n b tan 2 Θ d + Δ n b n o tan α tan Θ d ] .
Δ n b = a λ - λ c + b ,
a = 71.56 Å , b = 0.1338 , λ c = 2629 Å .

Metrics