Abstract

The scattering and absorption of light by randomly oriented, discretely scattering, red blood cells imbedded in a homogeneous plasma medium can be described by the P1 approximation to the one-speed transport equation, where the cells have the dual role of anisotropic sources for first scattering events and of scattering and absorption sites for subsequent scattering events. Equations for diffuse reflectance defined for a finite size receiver in the plane of a normally incident cylindrical photon beam are derived and compared with experimental data to fundamentally justify the basic sending–receiving charactreristics of a fiber optic catheter model. A model of the fiber optic catheter used for the spectrophotometric measurement of oxygen content in blood is developed from the theory and compared with experimental results to further substantiate the theoretical approach.

© 1976 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (9)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (2)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (44)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription