Abstract

No abstract available.

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Joos, Theoretical Physics (Hafner, New York, 1950), p. 471.
  2. E. J. Post, Rev. Mod. Phys. 39, 475 (1967).
    [Crossref]
  3. S. Balsamo, S. Ezekiel, V. Vali, Laser Focus 11, 8 (1975).
  4. G. E. Moss, L. R. Miller, R. L. Forward, Appl. Opt. 10, 2495 (1971).
    [Crossref] [PubMed]
  5. J. Kilpatrick, IEEE Spectrum, 44 (October1967).
    [Crossref]

1975 (1)

S. Balsamo, S. Ezekiel, V. Vali, Laser Focus 11, 8 (1975).

1971 (1)

1967 (2)

J. Kilpatrick, IEEE Spectrum, 44 (October1967).
[Crossref]

E. J. Post, Rev. Mod. Phys. 39, 475 (1967).
[Crossref]

Balsamo, S.

S. Balsamo, S. Ezekiel, V. Vali, Laser Focus 11, 8 (1975).

Ezekiel, S.

S. Balsamo, S. Ezekiel, V. Vali, Laser Focus 11, 8 (1975).

Forward, R. L.

Joos, G.

G. Joos, Theoretical Physics (Hafner, New York, 1950), p. 471.

Kilpatrick, J.

J. Kilpatrick, IEEE Spectrum, 44 (October1967).
[Crossref]

Miller, L. R.

Moss, G. E.

Post, E. J.

E. J. Post, Rev. Mod. Phys. 39, 475 (1967).
[Crossref]

Vali, V.

S. Balsamo, S. Ezekiel, V. Vali, Laser Focus 11, 8 (1975).

Appl. Opt. (1)

IEEE Spectrum (1)

J. Kilpatrick, IEEE Spectrum, 44 (October1967).
[Crossref]

Laser Focus (1)

S. Balsamo, S. Ezekiel, V. Vali, Laser Focus 11, 8 (1975).

Rev. Mod. Phys. (1)

E. J. Post, Rev. Mod. Phys. 39, 475 (1967).
[Crossref]

Other (1)

G. Joos, Theoretical Physics (Hafner, New York, 1950), p. 471.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

Experimental configuration of the optical components: L1 and L2 are the converging lenses, and B is the beam splitter.

Fig. 2
Fig. 2

The observed fringe pattern. High contrast was obtained by equalizing the spatial intensity distributions of both beams.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

Δ Z = 4 ω N π R 2 λ c = 2 ω L R λ c ,
Δ X = ( λ 2 π ) ( B ) 1 / 2 ( h ν η P ) 1 / 2 ,
Δ Z n = Δ X λ = ( B ) 1 / 2 2 π ( h ν η P ) 1 / 2 .
P = P 0 10 - α L ,
ω min 1.5 × 10 - 9 rad / sec .

Metrics