Abstract

The Kubelka-Munk theory of reflectance spectroscopy is used to derive an approximate equation that describes the rate of the photoprocess of a powdered sample in terms of the remission function. The equation is compared with one obtained using the particle model theory of diffuse reflectance and with experimental data for the photochemical reaction of powdered K3[Fe(C2O4)3]·3H2O.

© 1976 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Diffuse reflectance spectroscopy: a comparison of the theories

E. L. Simmons
Appl. Opt. 14(6) 1380-1386 (1975)

Applicability conditions of the Kubelka–Munk theory

William E. Vargas and Gunnar A. Niklasson
Appl. Opt. 36(22) 5580-5586 (1997)

Revised Kubelka–Munk theory. I. Theory and application

Li Yang and Björn Kruse
J. Opt. Soc. Am. A 21(10) 1933-1941 (2004)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (1)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (25)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription