Abstract

The development and testing of an ir hemi-ellipsoidal mirror reflectometer (HEMR), operational over a wavelength interval of 2–34 μm, are described. This optical system measures the hemispherical–directional reflectance of room temperature samples relative to a specular gold-coated surface. For a source and sample area commensurate with detectable energy requirements, it is shown experimentally that the HEMR is functional with very tolerable errors. Finally, the hemispherical–directional reflectance of test samples, e.g., black paints, gold diffuser, sulfur, cesium iodide, and others, is presented for wavelengths from 2 μm to 34 μm.

© 1976 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. P. Millard, E. R. Streed, Appl. Opt. 8, 1485 (1969).
    [CrossRef] [PubMed]
  2. R. T. Neher, D. K. Edwards, Appl. Opt. 4, 775 (1965).
    [CrossRef]
  3. S. T. Dunn, J. C. Richmond, J. F. Parmer, J. Spacecr. Rockets 3, 961 (1966).
    [CrossRef]
  4. W. R. Blevin, W. J. Brown, Rev. Sci. Instrum., 42, 385 (1965).
    [CrossRef]
  5. B. E. Wood, A. M. Smith, J. A. Roux, B. A. Seiber, AIAA J. 9, 1338 (1971).
    [CrossRef]
  6. B. E. Wood, A. M. Smith, J. A. Roux, B. A. Seiber, AIAA J. 9, 1836 (1971).
    [CrossRef]
  7. W. W. Coblentz, Nat. Bur. Stand. U.S. Bull. 9, 283 (1913).
  8. J. T. Neu, NASA CR-73193 (1968).
  9. B. E. Wood, J. G. Pipes, A. M. Smith, J. A. Roux, AEDC-TR-75-64 (AD A012878).
  10. W. M. Brandenburg, J. Opt. Soc. Am. 54, 1235 (1964).
    [CrossRef]
  11. D. K. Edwards, J. Heat Transfer, Trans. ASME, Ser. C 91, 1 (1969).
    [CrossRef]
  12. R. P. Heinisch, F. J. Bradac, D. B. Perlick, Appl. Opt. 9, 483 (1970).
    [CrossRef] [PubMed]
  13. The mirror was obtained through John T. Neu of the Convair Division of General Dynamics, San Diego, Calif.
  14. J. M. Bennett, E. J. Ashley, Appl. Opt. 4, 221 (1965).
    [CrossRef]
  15. B. E. Wood, A. M. Smith, AEDC-TR-74-22 (AD779771) (1974).
  16. D. L. Stierwalt, Appl. Opt. 5, 1911 (1966).
    [CrossRef] [PubMed]
  17. D. K. Edwards, W. M. Hall, in AIAA Progress in Astronautics and Aeronautics: Thermophysics and Temperature Control of Spacecraft and Entry Vehicles, G. B. Heller, Ed. (Academic, New York, 1966), Vol. 18, p. 3.

1971

B. E. Wood, A. M. Smith, J. A. Roux, B. A. Seiber, AIAA J. 9, 1338 (1971).
[CrossRef]

B. E. Wood, A. M. Smith, J. A. Roux, B. A. Seiber, AIAA J. 9, 1836 (1971).
[CrossRef]

1970

1969

J. P. Millard, E. R. Streed, Appl. Opt. 8, 1485 (1969).
[CrossRef] [PubMed]

D. K. Edwards, J. Heat Transfer, Trans. ASME, Ser. C 91, 1 (1969).
[CrossRef]

1968

J. T. Neu, NASA CR-73193 (1968).

1966

D. L. Stierwalt, Appl. Opt. 5, 1911 (1966).
[CrossRef] [PubMed]

S. T. Dunn, J. C. Richmond, J. F. Parmer, J. Spacecr. Rockets 3, 961 (1966).
[CrossRef]

1965

1964

1913

W. W. Coblentz, Nat. Bur. Stand. U.S. Bull. 9, 283 (1913).

Ashley, E. J.

Bennett, J. M.

Blevin, W. R.

W. R. Blevin, W. J. Brown, Rev. Sci. Instrum., 42, 385 (1965).
[CrossRef]

Bradac, F. J.

Brandenburg, W. M.

Brown, W. J.

W. R. Blevin, W. J. Brown, Rev. Sci. Instrum., 42, 385 (1965).
[CrossRef]

Coblentz, W. W.

W. W. Coblentz, Nat. Bur. Stand. U.S. Bull. 9, 283 (1913).

Dunn, S. T.

S. T. Dunn, J. C. Richmond, J. F. Parmer, J. Spacecr. Rockets 3, 961 (1966).
[CrossRef]

Edwards, D. K.

D. K. Edwards, J. Heat Transfer, Trans. ASME, Ser. C 91, 1 (1969).
[CrossRef]

R. T. Neher, D. K. Edwards, Appl. Opt. 4, 775 (1965).
[CrossRef]

D. K. Edwards, W. M. Hall, in AIAA Progress in Astronautics and Aeronautics: Thermophysics and Temperature Control of Spacecraft and Entry Vehicles, G. B. Heller, Ed. (Academic, New York, 1966), Vol. 18, p. 3.

Hall, W. M.

D. K. Edwards, W. M. Hall, in AIAA Progress in Astronautics and Aeronautics: Thermophysics and Temperature Control of Spacecraft and Entry Vehicles, G. B. Heller, Ed. (Academic, New York, 1966), Vol. 18, p. 3.

Heinisch, R. P.

Millard, J. P.

Neher, R. T.

Neu, J. T.

J. T. Neu, NASA CR-73193 (1968).

Parmer, J. F.

S. T. Dunn, J. C. Richmond, J. F. Parmer, J. Spacecr. Rockets 3, 961 (1966).
[CrossRef]

Perlick, D. B.

Pipes, J. G.

B. E. Wood, J. G. Pipes, A. M. Smith, J. A. Roux, AEDC-TR-75-64 (AD A012878).

Richmond, J. C.

S. T. Dunn, J. C. Richmond, J. F. Parmer, J. Spacecr. Rockets 3, 961 (1966).
[CrossRef]

Roux, J. A.

B. E. Wood, A. M. Smith, J. A. Roux, B. A. Seiber, AIAA J. 9, 1338 (1971).
[CrossRef]

B. E. Wood, A. M. Smith, J. A. Roux, B. A. Seiber, AIAA J. 9, 1836 (1971).
[CrossRef]

B. E. Wood, J. G. Pipes, A. M. Smith, J. A. Roux, AEDC-TR-75-64 (AD A012878).

Seiber, B. A.

B. E. Wood, A. M. Smith, J. A. Roux, B. A. Seiber, AIAA J. 9, 1836 (1971).
[CrossRef]

B. E. Wood, A. M. Smith, J. A. Roux, B. A. Seiber, AIAA J. 9, 1338 (1971).
[CrossRef]

Smith, A. M.

B. E. Wood, A. M. Smith, J. A. Roux, B. A. Seiber, AIAA J. 9, 1338 (1971).
[CrossRef]

B. E. Wood, A. M. Smith, J. A. Roux, B. A. Seiber, AIAA J. 9, 1836 (1971).
[CrossRef]

B. E. Wood, J. G. Pipes, A. M. Smith, J. A. Roux, AEDC-TR-75-64 (AD A012878).

B. E. Wood, A. M. Smith, AEDC-TR-74-22 (AD779771) (1974).

Stierwalt, D. L.

Streed, E. R.

Wood, B. E.

B. E. Wood, A. M. Smith, J. A. Roux, B. A. Seiber, AIAA J. 9, 1836 (1971).
[CrossRef]

B. E. Wood, A. M. Smith, J. A. Roux, B. A. Seiber, AIAA J. 9, 1338 (1971).
[CrossRef]

B. E. Wood, J. G. Pipes, A. M. Smith, J. A. Roux, AEDC-TR-75-64 (AD A012878).

B. E. Wood, A. M. Smith, AEDC-TR-74-22 (AD779771) (1974).

AIAA J.

B. E. Wood, A. M. Smith, J. A. Roux, B. A. Seiber, AIAA J. 9, 1338 (1971).
[CrossRef]

B. E. Wood, A. M. Smith, J. A. Roux, B. A. Seiber, AIAA J. 9, 1836 (1971).
[CrossRef]

Appl. Opt.

J. Heat Transfer, Trans. ASME, Ser. C

D. K. Edwards, J. Heat Transfer, Trans. ASME, Ser. C 91, 1 (1969).
[CrossRef]

J. Opt. Soc. Am.

J. Spacecr. Rockets

S. T. Dunn, J. C. Richmond, J. F. Parmer, J. Spacecr. Rockets 3, 961 (1966).
[CrossRef]

NASA CR-73193

J. T. Neu, NASA CR-73193 (1968).

Nat. Bur. Stand. U.S. Bull.

W. W. Coblentz, Nat. Bur. Stand. U.S. Bull. 9, 283 (1913).

Rev. Sci. Instrum.

W. R. Blevin, W. J. Brown, Rev. Sci. Instrum., 42, 385 (1965).
[CrossRef]

Other

The mirror was obtained through John T. Neu of the Convair Division of General Dynamics, San Diego, Calif.

B. E. Wood, A. M. Smith, AEDC-TR-74-22 (AD779771) (1974).

D. K. Edwards, W. M. Hall, in AIAA Progress in Astronautics and Aeronautics: Thermophysics and Temperature Control of Spacecraft and Entry Vehicles, G. B. Heller, Ed. (Academic, New York, 1966), Vol. 18, p. 3.

B. E. Wood, J. G. Pipes, A. M. Smith, J. A. Roux, AEDC-TR-75-64 (AD A012878).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (19)

Fig. 1
Fig. 1

Schematic of ellipsoidal mirror reflectometer and coordinate system.

Fig. 2
Fig. 2

Experimental arrangement of reflectometer.

Fig. 3
Fig. 3

Source, sample, and ellipsoid coordinate systems and their geometrical relationship.

Fig. 4
Fig. 4

Apparatus for blackbody radiation distribution measurement.

Fig. 5
Fig. 5

Blackbody intensity distribution measurements, 19.1 μm < λ < 22.5 μm.

Fig. 6
Fig. 6

Hemispherical coordinate system employed in ray-trace program.

Fig. 7
Fig. 7

Ray trace for facet located at (8.89, −8.89, 8.36).

Fig. 8
Fig. 8

Ray trace for facet located at (8.89, 8.89, 8.36).

Fig. 9
Fig. 9

Comparison of magnification results for infinitesimal areas, experimental data, and finite areas as a function of β for γ = 0° and 180°.

Fig. 10
Fig. 10

Hemiellipsoidal mirror reflectometer.

Fig. 11
Fig. 11

Sample and blackbody with chopper attached to yoke.

Fig. 12
Fig. 12

Reflectance of flowers of sulfur sample, θ = 15°.

Fig. 13
Fig. 13

Reflectance of ground cesium iodide sample, θ = 15°.

Fig. 14
Fig. 14

Reflectance of gold-coated grit sample, λ = 2–25 μm.

Fig. 15
Fig. 15

Reflectance of gold-coated grit sample, λ = 15–34 μm.

Fig. 16
Fig. 16

Reflectance of Nextel Velvet, Nextel Suede, and Cat-A-Lac Black paints, θ = 15° (2–25 μm).

Fig. 17
Fig. 17

Reflectance of Cat-A-Lac Black and Nextel Velvet Black paints, θ = 15° (15–34 μm).

Fig. 18
Fig. 18

Reflectance of carbon cloth, θ = 15°.

Fig. 19
Fig. 19

Reflectance of RTV-60 and RTV-102, θ = 15°.

Equations (21)

Equations on this page are rendered with MathJax. Learn more.

x 2 + z 2 a 2 + y 2 b 2 = x 2 + z 2 ( 15.03 ) 2 + y 2 ( 15.24 ) 2 = 1 ,
I i ( ψ , ζ ) = ρ M I b ( β , γ ) ,
ρ h d ( θ , φ ) = 1 π 2 π ρ b d ( ψ , ζ ; θ , φ ) cos ψ d ω i ,
ρ b d ( ψ , ζ ; θ , φ ) = π d I R ( θ , φ ) I i ( ψ , ζ ) cos ψ d ω i ,
I R ( θ , φ ) = 2 π d I R ( θ , φ ) = 1 π 2 π ρ b d ( ψ , ζ , θ , φ ) I i ( ψ , ζ ) cos ψ d ω i .
I R ( θ , φ ) = I i ( ψ , ζ ) ρ h d ( θ , φ ) ;             I i ( ψ , ζ ) = constant ,
d q ˙ s = I R ( θ , φ ) cos θ d ω R A s = ρ h d , S ( θ , φ ) I i ( ψ , ζ ) cos θ d ω R A s .
d q ˙ Ref = ρ h d , Ref ( θ , φ ) I i ( ψ , ζ ) cos θ d ω R A s .
ρ h d , S ( θ , φ ) ρ h d , Ref ( θ , φ ) = d q ˙ S d q ˙ Ref = K d q ˙ s K d q ˙ Ref = B S B Ref ,
d Q ˙ M = I b cos β d A 1 cos α d A M r 1 2 ,
d Q ˙ 2 = ρ M I b cos β d A 1 cos α d A M r 1 2
I i = d Q ˙ 2 d ω i cos ψ d A 2
d ω i = d A M cos α r 2 2 .
I i = ρ M I b ( cos β cos ψ ) ( d A 1 d A 2 ) ( r 2 r 1 ) 2 .
( cos β cos ψ ) ( d A 1 d A 2 ) ( r 2 r 1 ) 2 = constant .
d A 1 cos β r 1 2 = d ω 1 = d ω 2 = d A 2 cos ψ r 2 2 ,
d A 1 cos β d A 2 cos ψ ( r 2 r 1 ) 2 = 1 ,
I i = ρ M I b = constant .
M ( β , γ ) d A 2 d A 1 = ( cos β cos ψ ) ( r 2 r 1 ) 2 .
r 1 2 Δ A 1 cos β = r 2 2 Δ A 2 cos ψ ,
F i - j = cos β i cos β j A j π r 2 = ( 1 ) ( 1 ) ( 12.97 ) π ( 15.24 ) 2 = 1.78 × 10 - 2 ,

Metrics