Abstract

We present a technique for designing holographically fabricated structures in photoresist. A method is given for obtaining a suitable initial resist thickness. The etch depth (Δt) vs exposure (E) characteristic is determined experimentally for a fixed development time (T). The characteristics for other values of T are found using the linearity of Δt with T. Whole families of grating profiles can then be generated by using a polynomial fit to the exposure characteristics. For example, using a single holographic exposure plus an optional uniform preexposure, a family of grating profiles is obtained by varying the parameter T. A desired profile can thus be realized by a suitable combination of initial resist thickness, exposure, and development time. Residual resist layers may be eliminated by this method thereby minimizing scattering and other losses. Experimental verification of the various features of the model is given.

© 1976 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. L. Dakss, L. Kuhn, P. F. Heidrich, B. A. Scott, Appl. Phys. Lett. 16, 523 (1970).
    [CrossRef]
  2. H. Kogelnik, T. P. Sosnowksi, Bell Syst. Tech. J. 49, 1602 (1970).
  3. D. G. Dalgoutte, Opt. Commun. 8, 124 (1973).
    [CrossRef]
  4. D. C. Flanders, H. Kogelnik, R. V. Schmidt, C. V. Shank, Appl. Phys. Lett. 24, 194 (1974).
    [CrossRef]
  5. K. S. Pennington, L. Kuhn, Opt. Commun. 3, 357 (1971).
    [CrossRef]
  6. A. Saad, H. L. Bertoni, T. Tamir, Proc. IEEE 62, 1552 (1974).
    [CrossRef]
  7. H. Kogelnik, C. V. Shank, Appl. Phys. Lett. 18, 152 (1971).
    [CrossRef]
  8. H. W. Yen, M. Nakamura, E. Garmire, S. Somekh, A. Yariv, Opt. Commun. 9, 35 (1973).
    [CrossRef]
  9. H. I. Smith, Proc. IEEE 62, 1361 (1974).
    [CrossRef]
  10. H. L. Garvin, E. Garmire, S. Somekh, H. Stoll, A. Yariv, Appl. Opt. 12, 455 (1973).
    [CrossRef] [PubMed]
  11. T. Tamir, H. L. Bertoni, J. Opt. Soc. Am. 61, 1397 (1971).
    [CrossRef]
  12. S. T. Peng, H. L. Bertoni, T. Tamir, Opt. Commun. 10, 91 (1974).
    [CrossRef]
  13. R. A. Bartolini, Appl. Opt. 13, 129 (1974).
    [CrossRef] [PubMed]
  14. M. J. Beesley, J. G. Castledine, Appl. Opt. 9, 2720 (1970).
    [CrossRef] [PubMed]
  15. W. Tsang, S. Wang, Appl. Phys. Lett. 24, 196 (1974).
    [CrossRef]

1974 (6)

D. C. Flanders, H. Kogelnik, R. V. Schmidt, C. V. Shank, Appl. Phys. Lett. 24, 194 (1974).
[CrossRef]

A. Saad, H. L. Bertoni, T. Tamir, Proc. IEEE 62, 1552 (1974).
[CrossRef]

H. I. Smith, Proc. IEEE 62, 1361 (1974).
[CrossRef]

S. T. Peng, H. L. Bertoni, T. Tamir, Opt. Commun. 10, 91 (1974).
[CrossRef]

W. Tsang, S. Wang, Appl. Phys. Lett. 24, 196 (1974).
[CrossRef]

R. A. Bartolini, Appl. Opt. 13, 129 (1974).
[CrossRef] [PubMed]

1973 (3)

H. L. Garvin, E. Garmire, S. Somekh, H. Stoll, A. Yariv, Appl. Opt. 12, 455 (1973).
[CrossRef] [PubMed]

D. G. Dalgoutte, Opt. Commun. 8, 124 (1973).
[CrossRef]

H. W. Yen, M. Nakamura, E. Garmire, S. Somekh, A. Yariv, Opt. Commun. 9, 35 (1973).
[CrossRef]

1971 (3)

H. Kogelnik, C. V. Shank, Appl. Phys. Lett. 18, 152 (1971).
[CrossRef]

K. S. Pennington, L. Kuhn, Opt. Commun. 3, 357 (1971).
[CrossRef]

T. Tamir, H. L. Bertoni, J. Opt. Soc. Am. 61, 1397 (1971).
[CrossRef]

1970 (3)

M. J. Beesley, J. G. Castledine, Appl. Opt. 9, 2720 (1970).
[CrossRef] [PubMed]

M. L. Dakss, L. Kuhn, P. F. Heidrich, B. A. Scott, Appl. Phys. Lett. 16, 523 (1970).
[CrossRef]

H. Kogelnik, T. P. Sosnowksi, Bell Syst. Tech. J. 49, 1602 (1970).

Bartolini, R. A.

Beesley, M. J.

Bertoni, H. L.

A. Saad, H. L. Bertoni, T. Tamir, Proc. IEEE 62, 1552 (1974).
[CrossRef]

S. T. Peng, H. L. Bertoni, T. Tamir, Opt. Commun. 10, 91 (1974).
[CrossRef]

T. Tamir, H. L. Bertoni, J. Opt. Soc. Am. 61, 1397 (1971).
[CrossRef]

Castledine, J. G.

Dakss, M. L.

M. L. Dakss, L. Kuhn, P. F. Heidrich, B. A. Scott, Appl. Phys. Lett. 16, 523 (1970).
[CrossRef]

Dalgoutte, D. G.

D. G. Dalgoutte, Opt. Commun. 8, 124 (1973).
[CrossRef]

Flanders, D. C.

D. C. Flanders, H. Kogelnik, R. V. Schmidt, C. V. Shank, Appl. Phys. Lett. 24, 194 (1974).
[CrossRef]

Garmire, E.

H. L. Garvin, E. Garmire, S. Somekh, H. Stoll, A. Yariv, Appl. Opt. 12, 455 (1973).
[CrossRef] [PubMed]

H. W. Yen, M. Nakamura, E. Garmire, S. Somekh, A. Yariv, Opt. Commun. 9, 35 (1973).
[CrossRef]

Garvin, H. L.

Heidrich, P. F.

M. L. Dakss, L. Kuhn, P. F. Heidrich, B. A. Scott, Appl. Phys. Lett. 16, 523 (1970).
[CrossRef]

Kogelnik, H.

D. C. Flanders, H. Kogelnik, R. V. Schmidt, C. V. Shank, Appl. Phys. Lett. 24, 194 (1974).
[CrossRef]

H. Kogelnik, C. V. Shank, Appl. Phys. Lett. 18, 152 (1971).
[CrossRef]

H. Kogelnik, T. P. Sosnowksi, Bell Syst. Tech. J. 49, 1602 (1970).

Kuhn, L.

K. S. Pennington, L. Kuhn, Opt. Commun. 3, 357 (1971).
[CrossRef]

M. L. Dakss, L. Kuhn, P. F. Heidrich, B. A. Scott, Appl. Phys. Lett. 16, 523 (1970).
[CrossRef]

Nakamura, M.

H. W. Yen, M. Nakamura, E. Garmire, S. Somekh, A. Yariv, Opt. Commun. 9, 35 (1973).
[CrossRef]

Peng, S. T.

S. T. Peng, H. L. Bertoni, T. Tamir, Opt. Commun. 10, 91 (1974).
[CrossRef]

Pennington, K. S.

K. S. Pennington, L. Kuhn, Opt. Commun. 3, 357 (1971).
[CrossRef]

Saad, A.

A. Saad, H. L. Bertoni, T. Tamir, Proc. IEEE 62, 1552 (1974).
[CrossRef]

Schmidt, R. V.

D. C. Flanders, H. Kogelnik, R. V. Schmidt, C. V. Shank, Appl. Phys. Lett. 24, 194 (1974).
[CrossRef]

Scott, B. A.

M. L. Dakss, L. Kuhn, P. F. Heidrich, B. A. Scott, Appl. Phys. Lett. 16, 523 (1970).
[CrossRef]

Shank, C. V.

D. C. Flanders, H. Kogelnik, R. V. Schmidt, C. V. Shank, Appl. Phys. Lett. 24, 194 (1974).
[CrossRef]

H. Kogelnik, C. V. Shank, Appl. Phys. Lett. 18, 152 (1971).
[CrossRef]

Smith, H. I.

H. I. Smith, Proc. IEEE 62, 1361 (1974).
[CrossRef]

Somekh, S.

H. W. Yen, M. Nakamura, E. Garmire, S. Somekh, A. Yariv, Opt. Commun. 9, 35 (1973).
[CrossRef]

H. L. Garvin, E. Garmire, S. Somekh, H. Stoll, A. Yariv, Appl. Opt. 12, 455 (1973).
[CrossRef] [PubMed]

Sosnowksi, T. P.

H. Kogelnik, T. P. Sosnowksi, Bell Syst. Tech. J. 49, 1602 (1970).

Stoll, H.

Tamir, T.

A. Saad, H. L. Bertoni, T. Tamir, Proc. IEEE 62, 1552 (1974).
[CrossRef]

S. T. Peng, H. L. Bertoni, T. Tamir, Opt. Commun. 10, 91 (1974).
[CrossRef]

T. Tamir, H. L. Bertoni, J. Opt. Soc. Am. 61, 1397 (1971).
[CrossRef]

Tsang, W.

W. Tsang, S. Wang, Appl. Phys. Lett. 24, 196 (1974).
[CrossRef]

Wang, S.

W. Tsang, S. Wang, Appl. Phys. Lett. 24, 196 (1974).
[CrossRef]

Yariv, A.

H. W. Yen, M. Nakamura, E. Garmire, S. Somekh, A. Yariv, Opt. Commun. 9, 35 (1973).
[CrossRef]

H. L. Garvin, E. Garmire, S. Somekh, H. Stoll, A. Yariv, Appl. Opt. 12, 455 (1973).
[CrossRef] [PubMed]

Yen, H. W.

H. W. Yen, M. Nakamura, E. Garmire, S. Somekh, A. Yariv, Opt. Commun. 9, 35 (1973).
[CrossRef]

Appl. Opt. (3)

Appl. Phys. Lett. (4)

M. L. Dakss, L. Kuhn, P. F. Heidrich, B. A. Scott, Appl. Phys. Lett. 16, 523 (1970).
[CrossRef]

D. C. Flanders, H. Kogelnik, R. V. Schmidt, C. V. Shank, Appl. Phys. Lett. 24, 194 (1974).
[CrossRef]

H. Kogelnik, C. V. Shank, Appl. Phys. Lett. 18, 152 (1971).
[CrossRef]

W. Tsang, S. Wang, Appl. Phys. Lett. 24, 196 (1974).
[CrossRef]

Bell Syst. Tech. J. (1)

H. Kogelnik, T. P. Sosnowksi, Bell Syst. Tech. J. 49, 1602 (1970).

J. Opt. Soc. Am. (1)

Opt. Commun. (4)

D. G. Dalgoutte, Opt. Commun. 8, 124 (1973).
[CrossRef]

K. S. Pennington, L. Kuhn, Opt. Commun. 3, 357 (1971).
[CrossRef]

S. T. Peng, H. L. Bertoni, T. Tamir, Opt. Commun. 10, 91 (1974).
[CrossRef]

H. W. Yen, M. Nakamura, E. Garmire, S. Somekh, A. Yariv, Opt. Commun. 9, 35 (1973).
[CrossRef]

Proc. IEEE (2)

H. I. Smith, Proc. IEEE 62, 1361 (1974).
[CrossRef]

A. Saad, H. L. Bertoni, T. Tamir, Proc. IEEE 62, 1552 (1974).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Sketch of two possible grating profiles: (a) residual resist layer remaining and (b) residual resist layer developed away.

Fig. 2
Fig. 2

Average initial resist thickness vs spin speed for various resist-thinner combinations. Experimental uncertainties increase for spin speeds much less than 1000 rpm, and percent variations in thickness became greater for layers less than 1000 Å.

Fig. 3
Fig. 3

Etch depth vs exposure for constant development time, T = 20 see at 23°C. The solid curve is a fourth order, least squares polynomial fit to the experimental data. Experimental error is greater for exposures much less than 10 mJ/cm2.

Fig. 4
Fig. 4

Linearity of etch depth with development time for various values of exposure.

Fig. 5
Fig. 5

Family of grating profiles for a single exposure E = 45 + 10 sin(2π/d)x mJ/cm2. Four different development times were used: T = 10 sec, 20 sec, 30 sec, and 40 sec. The vertical scale is 470 Å/div., and the horizontal scale is 420 Å/div.

Fig. 6
Fig. 6

Family of profiles with E 35 + 30 sin(2π/d)x mJ/cm2. Again we have T = 10 sec, 20 sec, 30 sec, and 40 sec, and 470 Å/div. for the vertical scale and 420 Å/div. for the horizontal scale.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Δ t ( E , T 2 ) = ( T 2 / T 1 ) Δ t ( E , T 1 )

Metrics