Abstract

Transparent heat-mirror films, which transmit solar radiation but reflect ir thermal radiation, have potentially important applications in solar/thermal/electric conversion, solar heating, solar photovoltaic conversion, and window insulation. We have used rf sputtering to prepare two types of films: TiO2/Ag/TiO2 and Sn-doped In2O3. To characterize the properties of heat-mirror films for solar-energy collection, we define the parameters αeff, the effective solar absorptivity, and eff, the effective ir emissivity. For our Sn-doped In2O3 films, αeff/eff is comparable to the values of α/ reported for the leading selective absorbers. Even higher values of αeff/eff are obtained for the TiO2/Ag/TiO2 films.

© 1976 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. B. Reed, Solid State Research Report, MIT Lincoln Laboratory (1969:1), p. 21.
  2. J. W. Ramsey, J. T. Borzoni, T. H. Holland, NASA CR-134804, Honeywell System and Research Center (1975).
  3. A. B. Meinel, M. P. Meinel, Phys. Today 44 (Feb.1972).
  4. J. C. C. Fan, T. B. Reed, J. B. Goodenough, in Proceedings of 9th Intersociety Energy Conversion Engineering Conference, San Francisco, California (Society of Automotive Engineering, Inc., New York, 1974), p. 341.
  5. J. C. C. Fan, F. J. Bachner, G. H. Foley, P. M. Zavracky, Appl. Phys. Lett. 25, 693 (1974).
    [Crossref]
  6. J. C. C. Fan, F. J. Bachner, J. Electrochem. Soc., Solid State Science and Technology Division 122, 1719 (1975).
    [Crossref]
  7. Fabrication of selective absorbers that utilize the waveguide principle has been proposed by C. M. Horwitz, Opt. Commun. 11, 210 (1974).
    [Crossref]
  8. G. E. McDonald, NASA TMX-3136, NASA Lewis Research Center (1974).

1975 (1)

J. C. C. Fan, F. J. Bachner, J. Electrochem. Soc., Solid State Science and Technology Division 122, 1719 (1975).
[Crossref]

1974 (2)

Fabrication of selective absorbers that utilize the waveguide principle has been proposed by C. M. Horwitz, Opt. Commun. 11, 210 (1974).
[Crossref]

J. C. C. Fan, F. J. Bachner, G. H. Foley, P. M. Zavracky, Appl. Phys. Lett. 25, 693 (1974).
[Crossref]

1972 (1)

A. B. Meinel, M. P. Meinel, Phys. Today 44 (Feb.1972).

Bachner, F. J.

J. C. C. Fan, F. J. Bachner, J. Electrochem. Soc., Solid State Science and Technology Division 122, 1719 (1975).
[Crossref]

J. C. C. Fan, F. J. Bachner, G. H. Foley, P. M. Zavracky, Appl. Phys. Lett. 25, 693 (1974).
[Crossref]

Borzoni, J. T.

J. W. Ramsey, J. T. Borzoni, T. H. Holland, NASA CR-134804, Honeywell System and Research Center (1975).

Fan, J. C. C.

J. C. C. Fan, F. J. Bachner, J. Electrochem. Soc., Solid State Science and Technology Division 122, 1719 (1975).
[Crossref]

J. C. C. Fan, F. J. Bachner, G. H. Foley, P. M. Zavracky, Appl. Phys. Lett. 25, 693 (1974).
[Crossref]

J. C. C. Fan, T. B. Reed, J. B. Goodenough, in Proceedings of 9th Intersociety Energy Conversion Engineering Conference, San Francisco, California (Society of Automotive Engineering, Inc., New York, 1974), p. 341.

Foley, G. H.

J. C. C. Fan, F. J. Bachner, G. H. Foley, P. M. Zavracky, Appl. Phys. Lett. 25, 693 (1974).
[Crossref]

Goodenough, J. B.

J. C. C. Fan, T. B. Reed, J. B. Goodenough, in Proceedings of 9th Intersociety Energy Conversion Engineering Conference, San Francisco, California (Society of Automotive Engineering, Inc., New York, 1974), p. 341.

Holland, T. H.

J. W. Ramsey, J. T. Borzoni, T. H. Holland, NASA CR-134804, Honeywell System and Research Center (1975).

Horwitz, C. M.

Fabrication of selective absorbers that utilize the waveguide principle has been proposed by C. M. Horwitz, Opt. Commun. 11, 210 (1974).
[Crossref]

McDonald, G. E.

G. E. McDonald, NASA TMX-3136, NASA Lewis Research Center (1974).

Meinel, A. B.

A. B. Meinel, M. P. Meinel, Phys. Today 44 (Feb.1972).

Meinel, M. P.

A. B. Meinel, M. P. Meinel, Phys. Today 44 (Feb.1972).

Ramsey, J. W.

J. W. Ramsey, J. T. Borzoni, T. H. Holland, NASA CR-134804, Honeywell System and Research Center (1975).

Reed, T. B.

T. B. Reed, Solid State Research Report, MIT Lincoln Laboratory (1969:1), p. 21.

J. C. C. Fan, T. B. Reed, J. B. Goodenough, in Proceedings of 9th Intersociety Energy Conversion Engineering Conference, San Francisco, California (Society of Automotive Engineering, Inc., New York, 1974), p. 341.

Zavracky, P. M.

J. C. C. Fan, F. J. Bachner, G. H. Foley, P. M. Zavracky, Appl. Phys. Lett. 25, 693 (1974).
[Crossref]

Appl. Phys. Lett. (1)

J. C. C. Fan, F. J. Bachner, G. H. Foley, P. M. Zavracky, Appl. Phys. Lett. 25, 693 (1974).
[Crossref]

J. Electrochem. Soc. (1)

J. C. C. Fan, F. J. Bachner, J. Electrochem. Soc., Solid State Science and Technology Division 122, 1719 (1975).
[Crossref]

Opt. Commun. (1)

Fabrication of selective absorbers that utilize the waveguide principle has been proposed by C. M. Horwitz, Opt. Commun. 11, 210 (1974).
[Crossref]

Phys. Today (1)

A. B. Meinel, M. P. Meinel, Phys. Today 44 (Feb.1972).

Other (4)

J. C. C. Fan, T. B. Reed, J. B. Goodenough, in Proceedings of 9th Intersociety Energy Conversion Engineering Conference, San Francisco, California (Society of Automotive Engineering, Inc., New York, 1974), p. 341.

T. B. Reed, Solid State Research Report, MIT Lincoln Laboratory (1969:1), p. 21.

J. W. Ramsey, J. T. Borzoni, T. H. Holland, NASA CR-134804, Honeywell System and Research Center (1975).

G. E. McDonald, NASA TMX-3136, NASA Lewis Research Center (1974).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Normalized distribution of radiant energy for blackbody temperatures of 5800 K (solar distribution at AMO) and 750 K. The dashed line shows the reflectivity of an ideal heat mirror.

Fig. 2
Fig. 2

Three solar collector schemes for solar/thermal/electric conversion.

Fig. 3
Fig. 3

Theoretical efficiencies for solar/thermal/electric conversion using a TiO2/Ag/TiO2 heat mirror and a selective absorber (α = 1.0, = 0.2), calculated as a function of absorber temperature T. Solid line: thermal power available/input solar power. Dashed line: Carnot efficiency. Dot–dash line: combined efficiency (electric power/solar power).

Fig. 4
Fig. 4

Measured optical transmission and reflectivity of a 180-Å TiO2/180-Å Ag/180-Å TiO2 film on Corning 7059 glass.

Fig. 5
Fig. 5

Calculated absorptance of Ag, Au, and Cu films (each 200 Å thick) vs wavelength.

Fig. 6
Fig. 6

Proposed design of a solar heating panel using a transparent heat mirror.

Fig. 7
Fig. 7

Schematic diagram of target and substrate configuration in our rf sputtering apparatus.

Fig. 8
Fig. 8

Reflectivity of Sn-doped In2O3 at 5 μm and 10 μm as a function of sputtering power and the resulting substrate temperature.

Fig. 9
Fig. 9

Transmission and reflectivity measured as a function of wavelength for a Sn-doped In2O3 film deposited on Corning 7059 glass. The transmission of the same film coated with MgF2(1000 Å) and that of the bare substrate are also included.

Fig. 10
Fig. 10

Resistivity ρ of Sn-doped In2O3 films as a function of sputtering power and resulting substrate temperature.

Tables (2)

Tables Icon

Table I Comparison of Selective Optical Coatings

Tables Icon

Table II Solar Selective Coatings

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

α eff = [ 0.25 μ m 2.5 μ m T r ( λ ) A ( λ ) d λ ] / [ 0.25 μ m 2.5 μ m A ( λ ) d λ ] , eff = { 1 μ m 100 μ m [ 1 - R ( λ ) ] W B ( T B , λ ) d λ } / [ 1 μ m 100 μ m W B ( T B , λ ) d λ ]

Metrics