Abstract

A method of autoboresighting a Gaussian beam on a specular target point is presented. Closed form analysis of a staring detector output shows that the nutation frequency fundamental component in the output can be used to drive the spatial position of the nutation center to converge and lock on a target specular point. The conical scan boresighter is a combination of a reference point tracker and a beam steerer relative to the track point. The reference point must be in the field of view of the detector. The precision of tracking and hence of boresighting depends on the precision and stability of the reference point relative to the desired point on target.

© 1976 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. S. Berkowitz, Modern Radar, Analysis, Evaluation and System Design (Wiley, New York, 1965).
  2. M. I. Skolnik, Radar Handbook (McGraw-Hill, New York, 1970).
  3. A. Erteza, Laser Digest, AFWL-TR-74-241 (Air Force Weapons Laboratory, KAFB, New Mexico, Sept.1974), p. 54.
  4. A. Erteza, Appl. Opt. 15, 000 (1976).

1976 (1)

A. Erteza, Appl. Opt. 15, 000 (1976).

Berkowitz, R. S.

R. S. Berkowitz, Modern Radar, Analysis, Evaluation and System Design (Wiley, New York, 1965).

Erteza, A.

A. Erteza, Appl. Opt. 15, 000 (1976).

A. Erteza, Laser Digest, AFWL-TR-74-241 (Air Force Weapons Laboratory, KAFB, New Mexico, Sept.1974), p. 54.

Skolnik, M. I.

M. I. Skolnik, Radar Handbook (McGraw-Hill, New York, 1970).

Appl. Opt. (1)

A. Erteza, Appl. Opt. 15, 000 (1976).

Other (3)

R. S. Berkowitz, Modern Radar, Analysis, Evaluation and System Design (Wiley, New York, 1965).

M. I. Skolnik, Radar Handbook (McGraw-Hill, New York, 1970).

A. Erteza, Laser Digest, AFWL-TR-74-241 (Air Force Weapons Laboratory, KAFB, New Mexico, Sept.1974), p. 54.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Positions of the target, source, detector, and the beam axis in a conical scan tracker–boresighter.

Fig. 2
Fig. 2

Reference coordinate system for the boresighter.

Fig. 3
Fig. 3

I0, I1, and Gaussian function vs x.

Fig. 4
Fig. 4

Gain at equilibrium vs nutation radius.

Fig. 5
Fig. 5

Block diagram for the boresighter.

Equations (25)

Equations on this page are rendered with MathJax. Learn more.

d 2 ( t ) = ( x b - x t ) 2 + ( y b - y t ) 2 .
d 2 ( t ) = b 2 + ρ 2 - 2 b ρ cos ( w 0 t - ψ ) ,
ρ 2 = r c 2 + r t 2 - 2 r c r t cos ( θ T - θ c ) ,
tan ψ = ( r c sin θ c - r t sin θ T ) / ( r c cos θ c - r t cos θ T ) .
x b ( t ) = x c + b cos w 0 t , y b ( t ) = y c + b sin w 0 t .
J ( x 1 ) = J m exp [ - ( x 1 2 / 2 σ 2 ) ] ,
J ( t ) = J m exp [ - d 2 ( t ) / 2 σ 2 ] ,
P ( t ) = a J m exp [ - d 2 ( t ) / 2 σ 2 ] ,
P r ( t ) = [ K a J m τ ( R 0 ) A / 4 π R 0 2 ] exp [ - d 2 ( t ) / 2 σ 2 ] ,
P r ( t ) = P c exp [ - d 2 ( t ) / 26 2 ] .
v ( t ) = α P c exp [ - d 2 ( t ) / 2 σ 2 ] V ,
v 0 = [ α K a A J m τ ( R 0 ) / 4 π R 0 2 ] ,
v ( t ) = v 0 exp [ - ( b 2 + ρ 2 ) / 2 σ 2 + ( b ρ / σ 2 ) cos ( w 0 t - ψ ) ] .
v ( t ) = v 0 [ I 0 ( b ρ / σ 2 ) + 2 n = 1 I n ( b ρ / σ 2 ) cos n ( w 0 t - ψ ) ] × exp [ - ( b 2 + ρ 2 ) / 2 σ 2 ] ,
v dc = v 0 exp [ - ( b 2 + ρ 2 ) / 2 σ 2 ] I 0 ( b ρ / σ 2 )
v ac = 2 v 0 exp [ - ( b 2 + ρ 2 ) / 2 σ 2 ] I 1 ( b ρ / σ 2 ) ,
g ac = ( v ac / ρ ) = 2 v 0 exp [ - ( b 2 + ρ 2 ) / 2 σ 2 ] [ ( b / σ 2 ) I 0 ( b ρ / σ 2 ) - ( ρ / σ 2 + 1 / ρ ) I 1 ( b ρ / σ 2 ) ] .
2 ( v 0 / σ 2 ) exp ( - b 2 / 2 σ 2 ) { - ( b ρ 2 / 2 σ 2 ) [ 1 / Γ ( 2 ) ] + b - b / [ 2 Γ ( 2 ) ] } , g aco = ( b v 0 / σ 2 ) exp ( - b 2 / 2 σ 2 ) .
g a com = 0.6 ( v 0 / σ ) ,
σ = R 0 × 10 μ rad = 10 5 cm × 10 × 10 - 6 = 1 cm .
J m = τ ( R 0 ) P X T 2 π σ 2 ,
P D = 0 J m exp λ ( - ξ 2 / 2 σ 2 ) 2 π ξ d ξ ,
v 0 = ( α A ) ( K a ) J m τ ( R 0 ) 4 π R 0 2 V ,
α A = k g = 1 × 10 9 V W / cm 2 = 1 × 10 9 V cm 2 W .
g acom = 0.6 × 1 × 10 - 3 P X T V / μ rad 10 - 3 P X T V / μ rad .

Metrics