Abstract

No abstract available.

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Winston, Sol. Energy 16, 89 (1974).
    [CrossRef]
  2. R. Winston, J. Opt. Soc. Am. 60, 245 (1970);this paper contains earlier references. See also V. K. Baranov, G. K. Melnikov, Sov. J. Opt. Technol. 33, 408 (1966).
    [CrossRef]
  3. R. Winston, J. M. Enoch, J. Opt. Soc. Am. 61, 1120 (1971).
    [CrossRef] [PubMed]
  4. R. Levi-Setti, D. A. Park, R. Winston, Nature 253, 116 (1973).
  5. D. A. Harper, R. H. Hildebrand, R. Stiening, R. Winston, Appl. Opt. 15, 53 (1976).
    [CrossRef] [PubMed]

1976

1974

R. Winston, Sol. Energy 16, 89 (1974).
[CrossRef]

1973

R. Levi-Setti, D. A. Park, R. Winston, Nature 253, 116 (1973).

1971

1970

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (1)

Fig. 1
Fig. 1

The left half shows the profile curve of a compound parabolic concentrator (trough or cone). The optic axis is denoted by OA, and other quantities are defined in the text. The right half illustrates how the angular acceptance cone lies just outside the critical cone at the exit edge of the external wall and provides the basis for a geometric derivation of Eq. (5). The acceptance cone C′ (axis P) is elliptic for a trough CPC and right circular for a cone CPC. The critical cone C (axis N) is tangent to the acceptance cone along the extreme meridional ray M. The ray MR illustrates that multiple reflections in a trough will be totally internally reflected.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

x = n / sin θ max ( trough ) ,
x = n 2 / sin 2 θ max ( cone ) ,
sin θ max = ( 1 / n ) sin θ max , and
θ c = arc sin ( 1 / n ) ,
sin θ max ( 1 2 / n 2 ) ,
sin θ max n ( 1 2 / n 2 ) ,
x max = 1 / ( 1 2 / n 2 ) ( trough ) .
x max = 1 / ( 1 2 / n 2 ) 2 ( cone ) ,

Metrics