Abstract

The generation of tunable coherent uv radiation by sum frequency mixing, in potassium pentaborate, the outputs of two tunable N2 pumped dye lasers has been investigated. Tunable radiation extending from 217 nm to 208 nm has been generated in this manner. A conversion efficiency of 2.5 × 10−4 is observed at input powers of ~2 kW in each laser beam. Improved refractive index data for potassium pentaborate are also presented.

© 1976 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. F. Dewey, W. R. Cook, R. T. Hodgson, J. J. Wynne, Appl. Phys. Lett. 26, 714 (1975).
    [CrossRef]
  2. H. J. Dewey, IEEE J. Quantum Electron. QE-12, 303 (1976).
    [CrossRef]
  3. R. T. Hodgson, P. P. Sorokin, J. J. Wynne, Phys. Rev. Lett. 32, 343 (1974).
    [CrossRef]
  4. S. C. Wallace, G. Zdasiuk, Appl. Phys. Lett. 28, 449 (1976).
    [CrossRef]
  5. A. H. Kung, Appl. Phys. Lett. 25, 653 (1974).
    [CrossRef]
  6. A. H. Kung, J. F. Young, S. E. Harris, Appl. Phys. Lett. 22, 301 (1973).
    [CrossRef]
  7. G. A. Massey, Appl. Phys. Lett. 24, 371 (1974).
    [CrossRef]
  8. W. R. Cook, L. M. Hubby, J. Opt. Soc. Am. 66, 72 (1976).
    [CrossRef]
  9. F. Zernicke, J. E. Midwinter, Applied Nonlinear Optics, S. S. Ballard, Ed. (Wiley, New York, 1973).
  10. In this discussion the c axis is the polar axis, also referred to as the z direction. The a and b axes are synonymous with the x and y directions, respectively.
  11. E. D. Stokes, F. B. Dunning, R. F. Stebbings, G. K. Walters, R. D. Rundel, Opt. Commun. 5, 267 (1972).
    [CrossRef]
  12. F. B. Dunning, E. D. Stokes, Opt. Commun. 6, 160 (1972).
    [CrossRef]
  13. G. D. Boyd, D. A. Kleinman, J. Appl. Phys. 39, 3597 (1968).
    [CrossRef]

1976 (3)

H. J. Dewey, IEEE J. Quantum Electron. QE-12, 303 (1976).
[CrossRef]

S. C. Wallace, G. Zdasiuk, Appl. Phys. Lett. 28, 449 (1976).
[CrossRef]

W. R. Cook, L. M. Hubby, J. Opt. Soc. Am. 66, 72 (1976).
[CrossRef]

1975 (1)

C. F. Dewey, W. R. Cook, R. T. Hodgson, J. J. Wynne, Appl. Phys. Lett. 26, 714 (1975).
[CrossRef]

1974 (3)

G. A. Massey, Appl. Phys. Lett. 24, 371 (1974).
[CrossRef]

A. H. Kung, Appl. Phys. Lett. 25, 653 (1974).
[CrossRef]

R. T. Hodgson, P. P. Sorokin, J. J. Wynne, Phys. Rev. Lett. 32, 343 (1974).
[CrossRef]

1973 (1)

A. H. Kung, J. F. Young, S. E. Harris, Appl. Phys. Lett. 22, 301 (1973).
[CrossRef]

1972 (2)

E. D. Stokes, F. B. Dunning, R. F. Stebbings, G. K. Walters, R. D. Rundel, Opt. Commun. 5, 267 (1972).
[CrossRef]

F. B. Dunning, E. D. Stokes, Opt. Commun. 6, 160 (1972).
[CrossRef]

1968 (1)

G. D. Boyd, D. A. Kleinman, J. Appl. Phys. 39, 3597 (1968).
[CrossRef]

Boyd, G. D.

G. D. Boyd, D. A. Kleinman, J. Appl. Phys. 39, 3597 (1968).
[CrossRef]

Cook, W. R.

W. R. Cook, L. M. Hubby, J. Opt. Soc. Am. 66, 72 (1976).
[CrossRef]

C. F. Dewey, W. R. Cook, R. T. Hodgson, J. J. Wynne, Appl. Phys. Lett. 26, 714 (1975).
[CrossRef]

Dewey, C. F.

C. F. Dewey, W. R. Cook, R. T. Hodgson, J. J. Wynne, Appl. Phys. Lett. 26, 714 (1975).
[CrossRef]

Dewey, H. J.

H. J. Dewey, IEEE J. Quantum Electron. QE-12, 303 (1976).
[CrossRef]

Dunning, F. B.

E. D. Stokes, F. B. Dunning, R. F. Stebbings, G. K. Walters, R. D. Rundel, Opt. Commun. 5, 267 (1972).
[CrossRef]

F. B. Dunning, E. D. Stokes, Opt. Commun. 6, 160 (1972).
[CrossRef]

Harris, S. E.

A. H. Kung, J. F. Young, S. E. Harris, Appl. Phys. Lett. 22, 301 (1973).
[CrossRef]

Hodgson, R. T.

C. F. Dewey, W. R. Cook, R. T. Hodgson, J. J. Wynne, Appl. Phys. Lett. 26, 714 (1975).
[CrossRef]

R. T. Hodgson, P. P. Sorokin, J. J. Wynne, Phys. Rev. Lett. 32, 343 (1974).
[CrossRef]

Hubby, L. M.

Kleinman, D. A.

G. D. Boyd, D. A. Kleinman, J. Appl. Phys. 39, 3597 (1968).
[CrossRef]

Kung, A. H.

A. H. Kung, Appl. Phys. Lett. 25, 653 (1974).
[CrossRef]

A. H. Kung, J. F. Young, S. E. Harris, Appl. Phys. Lett. 22, 301 (1973).
[CrossRef]

Massey, G. A.

G. A. Massey, Appl. Phys. Lett. 24, 371 (1974).
[CrossRef]

Midwinter, J. E.

F. Zernicke, J. E. Midwinter, Applied Nonlinear Optics, S. S. Ballard, Ed. (Wiley, New York, 1973).

Rundel, R. D.

E. D. Stokes, F. B. Dunning, R. F. Stebbings, G. K. Walters, R. D. Rundel, Opt. Commun. 5, 267 (1972).
[CrossRef]

Sorokin, P. P.

R. T. Hodgson, P. P. Sorokin, J. J. Wynne, Phys. Rev. Lett. 32, 343 (1974).
[CrossRef]

Stebbings, R. F.

E. D. Stokes, F. B. Dunning, R. F. Stebbings, G. K. Walters, R. D. Rundel, Opt. Commun. 5, 267 (1972).
[CrossRef]

Stokes, E. D.

F. B. Dunning, E. D. Stokes, Opt. Commun. 6, 160 (1972).
[CrossRef]

E. D. Stokes, F. B. Dunning, R. F. Stebbings, G. K. Walters, R. D. Rundel, Opt. Commun. 5, 267 (1972).
[CrossRef]

Wallace, S. C.

S. C. Wallace, G. Zdasiuk, Appl. Phys. Lett. 28, 449 (1976).
[CrossRef]

Walters, G. K.

E. D. Stokes, F. B. Dunning, R. F. Stebbings, G. K. Walters, R. D. Rundel, Opt. Commun. 5, 267 (1972).
[CrossRef]

Wynne, J. J.

C. F. Dewey, W. R. Cook, R. T. Hodgson, J. J. Wynne, Appl. Phys. Lett. 26, 714 (1975).
[CrossRef]

R. T. Hodgson, P. P. Sorokin, J. J. Wynne, Phys. Rev. Lett. 32, 343 (1974).
[CrossRef]

Young, J. F.

A. H. Kung, J. F. Young, S. E. Harris, Appl. Phys. Lett. 22, 301 (1973).
[CrossRef]

Zdasiuk, G.

S. C. Wallace, G. Zdasiuk, Appl. Phys. Lett. 28, 449 (1976).
[CrossRef]

Zernicke, F.

F. Zernicke, J. E. Midwinter, Applied Nonlinear Optics, S. S. Ballard, Ed. (Wiley, New York, 1973).

Appl. Phys. Lett. (5)

S. C. Wallace, G. Zdasiuk, Appl. Phys. Lett. 28, 449 (1976).
[CrossRef]

A. H. Kung, Appl. Phys. Lett. 25, 653 (1974).
[CrossRef]

A. H. Kung, J. F. Young, S. E. Harris, Appl. Phys. Lett. 22, 301 (1973).
[CrossRef]

G. A. Massey, Appl. Phys. Lett. 24, 371 (1974).
[CrossRef]

C. F. Dewey, W. R. Cook, R. T. Hodgson, J. J. Wynne, Appl. Phys. Lett. 26, 714 (1975).
[CrossRef]

IEEE J. Quantum Electron. (1)

H. J. Dewey, IEEE J. Quantum Electron. QE-12, 303 (1976).
[CrossRef]

J. Appl. Phys. (1)

G. D. Boyd, D. A. Kleinman, J. Appl. Phys. 39, 3597 (1968).
[CrossRef]

J. Opt. Soc. Am. (1)

Opt. Commun. (2)

E. D. Stokes, F. B. Dunning, R. F. Stebbings, G. K. Walters, R. D. Rundel, Opt. Commun. 5, 267 (1972).
[CrossRef]

F. B. Dunning, E. D. Stokes, Opt. Commun. 6, 160 (1972).
[CrossRef]

Phys. Rev. Lett. (1)

R. T. Hodgson, P. P. Sorokin, J. J. Wynne, Phys. Rev. Lett. 32, 343 (1974).
[CrossRef]

Other (2)

F. Zernicke, J. E. Midwinter, Applied Nonlinear Optics, S. S. Ballard, Ed. (Wiley, New York, 1973).

In this discussion the c axis is the polar axis, also referred to as the z direction. The a and b axes are synonymous with the x and y directions, respectively.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

The wavelength combinations λ1, λ2, which produce phase matched sum frequency mixing during propagation along the b axis of a KB5 crystal. Pairs of like symbols represent wavelength combinations determined experimentally: ---- wavelength combinations calculated by use of the refractive index data of Cook and Hubby8; — wavelength combinations calculated by use of the revised Sellmeier constants in Table I.

Fig. 2
Fig. 2

Angle tuning curve for mixing with 337.1-nm radiation in KB5. The interacting beams propagate in the ab plane at an angle ϕ to the b axis.

Fig. 3
Fig. 3

Comparison of the revised refractive index data and the experimental results of Cook and Hubby8: +++ experimental results: — values calculated by use of the revised Sellmeier constants listed in Table I.

Tables (1)

Tables Icon

Table I Sellmeier Constants for KB5

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

n ( λ 3 ) λ 3 = n ( λ 1 ) λ 1 + n ( λ 2 ) λ 2
1 λ 3 = 1 λ 1 + 1 λ 2
P z ( ω 1 + ω 2 ) = d 31 E x ( ω 1 ) E x ( ω 2 ) ,
n c ( λ 3 ) λ 3 = n a ( λ 1 ) λ 1 + n a ( λ 2 ) λ 2 ,
W λ 3 = 512 π 2 d 31 2 l ω 0 ω 1 ω 2 n 3 2 c 4 h W λ 1 W λ 2 ,
W λ 3 = 1.35 × 10 - 5 W λ 1 W λ 2 ,

Metrics