Abstract

An evacuated high transmission prism spectrograph using a microchannel plate detection system with resistive strip readout was flown behind a precision pointing telescope on a sounding rocket. The construction, preparation, flight performance, and calibration stability of the system are discussed. Despite the adverse environmental conditions associated with sounding rocket flights, the microchannel detector system performed well. Far uv spectra (1160–1750 Å) of stellar and planetary objects were obtained; spectral features with fluxes as low as 0.06 photons cm−2 sec−1 were detectable. This was achieved by operating the plates at lower than normal gains, using sensitive pulse counting electronics with both upper and lower limit discriminators, and maintaining the spectrograph and detector at a pressure of ~10−6 Torr until reaching altitude.

© 1976 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Bottema, W. G. Fastie, H. W. Moos, Appl. Opt. 8, 1821 (1969).
    [CrossRef] [PubMed]
  2. H. W. Moos, R. C. Vitz, J. R. Barry, J. L. Buckley, Appl. Opt. 9, 601 (1970).
    [CrossRef] [PubMed]
  3. J. W. Giles, W. R. McKinney, C. S. Freer, H. W. Moos, Space Sci. Instrum. 1, 51 (1975).
  4. G. M. Lawrence, E. J. Stone, Rev. Sci. Instrum. 46, 432 (1975).
    [CrossRef]
  5. R. Hutter, in Beams with a Space Charge, Vol. 2 of Focusing of Charged Particles, A. Septier, Ed. (Academic, New York, 1967).
  6. G. E. Vibrans, M.I.T. Lincoln Laboratory, Technical Report 308 (1963).
  7. S. W. Duckett, P. H. Metzger, Phys. Rev. 137A, 953 (1965).
    [CrossRef]
  8. D. J. Ruggieri, IEEE Trans. Nucl. Sci. NS-19, 3 (1972).
  9. J. G. Timothy, Rev. Sci. Instrum. 44, 207 (1973).
    [CrossRef]
  10. J. G. Timothy, Rev. Sci. Instrum. 45, 834 (1974).
    [CrossRef]
  11. J. G. Timothy, R. L. Bybee, Appl. Opt. 14, 1632 (1975).
    [CrossRef] [PubMed]
  12. J. G. Timothy, R. L. Bybee, Rev. Sci. Instrum. 46, 1615 (1975).
    [CrossRef]
  13. J. P. Rager, J. F. Renaud, Rev. Sci. Instrum. 45, 922 (1974).
    [CrossRef]
  14. J. P. Rager, J. F. Renaud, V. T. du Montcel, Rev. Sci. Instrum. 45, 927 (1974).
    [CrossRef]
  15. L. G. Jacchia, Smithsonian Astrophysical Observatory, Special Report 332 (1971).
  16. W. G. Fastie, H. M. Crosswhite, D. F. Heath, J. Geophys. Res. 69, 4129 (1964).
    [CrossRef]
  17. R. C. Bohlin, P. A. Marionni, T. P. Stecher, Astrophys. J. 202, 415 (1975).
    [CrossRef]
  18. W. G. Fastie, D. E. Kerr, Appl. Opt. 14, 2133 (1975).
    [CrossRef] [PubMed]
  19. L. R. Canfield, R. G. Johnston, R. P. Madden, Appl. Opt. 12, 1611 (1973).
    [CrossRef] [PubMed]
  20. G. J. Rottman, LASP, U. Colorado, private communication.
  21. R. C. Vitz, H. Weiser, H. W. Moos, A. Weinstein, E. S. Warden, Astrophys. J. 205, L35 (1976).
    [CrossRef]
  22. A. Weinstein, in preparation.
  23. H. W. Moos, G. J. Rottman, Astrophys. J. 174, L73 (1972).
    [CrossRef]
  24. W. McClintock, Johns Hopkins U., private communication.

1976 (1)

R. C. Vitz, H. Weiser, H. W. Moos, A. Weinstein, E. S. Warden, Astrophys. J. 205, L35 (1976).
[CrossRef]

1975 (6)

R. C. Bohlin, P. A. Marionni, T. P. Stecher, Astrophys. J. 202, 415 (1975).
[CrossRef]

W. G. Fastie, D. E. Kerr, Appl. Opt. 14, 2133 (1975).
[CrossRef] [PubMed]

J. W. Giles, W. R. McKinney, C. S. Freer, H. W. Moos, Space Sci. Instrum. 1, 51 (1975).

G. M. Lawrence, E. J. Stone, Rev. Sci. Instrum. 46, 432 (1975).
[CrossRef]

J. G. Timothy, R. L. Bybee, Appl. Opt. 14, 1632 (1975).
[CrossRef] [PubMed]

J. G. Timothy, R. L. Bybee, Rev. Sci. Instrum. 46, 1615 (1975).
[CrossRef]

1974 (3)

J. P. Rager, J. F. Renaud, Rev. Sci. Instrum. 45, 922 (1974).
[CrossRef]

J. P. Rager, J. F. Renaud, V. T. du Montcel, Rev. Sci. Instrum. 45, 927 (1974).
[CrossRef]

J. G. Timothy, Rev. Sci. Instrum. 45, 834 (1974).
[CrossRef]

1973 (2)

1972 (2)

D. J. Ruggieri, IEEE Trans. Nucl. Sci. NS-19, 3 (1972).

H. W. Moos, G. J. Rottman, Astrophys. J. 174, L73 (1972).
[CrossRef]

1970 (1)

1969 (1)

1965 (1)

S. W. Duckett, P. H. Metzger, Phys. Rev. 137A, 953 (1965).
[CrossRef]

1964 (1)

W. G. Fastie, H. M. Crosswhite, D. F. Heath, J. Geophys. Res. 69, 4129 (1964).
[CrossRef]

Barry, J. R.

Bohlin, R. C.

R. C. Bohlin, P. A. Marionni, T. P. Stecher, Astrophys. J. 202, 415 (1975).
[CrossRef]

Bottema, M.

Buckley, J. L.

Bybee, R. L.

J. G. Timothy, R. L. Bybee, Appl. Opt. 14, 1632 (1975).
[CrossRef] [PubMed]

J. G. Timothy, R. L. Bybee, Rev. Sci. Instrum. 46, 1615 (1975).
[CrossRef]

Canfield, L. R.

Crosswhite, H. M.

W. G. Fastie, H. M. Crosswhite, D. F. Heath, J. Geophys. Res. 69, 4129 (1964).
[CrossRef]

du Montcel, V. T.

J. P. Rager, J. F. Renaud, V. T. du Montcel, Rev. Sci. Instrum. 45, 927 (1974).
[CrossRef]

Duckett, S. W.

S. W. Duckett, P. H. Metzger, Phys. Rev. 137A, 953 (1965).
[CrossRef]

Fastie, W. G.

Freer, C. S.

J. W. Giles, W. R. McKinney, C. S. Freer, H. W. Moos, Space Sci. Instrum. 1, 51 (1975).

Giles, J. W.

J. W. Giles, W. R. McKinney, C. S. Freer, H. W. Moos, Space Sci. Instrum. 1, 51 (1975).

Heath, D. F.

W. G. Fastie, H. M. Crosswhite, D. F. Heath, J. Geophys. Res. 69, 4129 (1964).
[CrossRef]

Hutter, R.

R. Hutter, in Beams with a Space Charge, Vol. 2 of Focusing of Charged Particles, A. Septier, Ed. (Academic, New York, 1967).

Jacchia, L. G.

L. G. Jacchia, Smithsonian Astrophysical Observatory, Special Report 332 (1971).

Johnston, R. G.

Kerr, D. E.

Lawrence, G. M.

G. M. Lawrence, E. J. Stone, Rev. Sci. Instrum. 46, 432 (1975).
[CrossRef]

Madden, R. P.

Marionni, P. A.

R. C. Bohlin, P. A. Marionni, T. P. Stecher, Astrophys. J. 202, 415 (1975).
[CrossRef]

McClintock, W.

W. McClintock, Johns Hopkins U., private communication.

McKinney, W. R.

J. W. Giles, W. R. McKinney, C. S. Freer, H. W. Moos, Space Sci. Instrum. 1, 51 (1975).

Metzger, P. H.

S. W. Duckett, P. H. Metzger, Phys. Rev. 137A, 953 (1965).
[CrossRef]

Moos, H. W.

R. C. Vitz, H. Weiser, H. W. Moos, A. Weinstein, E. S. Warden, Astrophys. J. 205, L35 (1976).
[CrossRef]

J. W. Giles, W. R. McKinney, C. S. Freer, H. W. Moos, Space Sci. Instrum. 1, 51 (1975).

H. W. Moos, G. J. Rottman, Astrophys. J. 174, L73 (1972).
[CrossRef]

H. W. Moos, R. C. Vitz, J. R. Barry, J. L. Buckley, Appl. Opt. 9, 601 (1970).
[CrossRef] [PubMed]

M. Bottema, W. G. Fastie, H. W. Moos, Appl. Opt. 8, 1821 (1969).
[CrossRef] [PubMed]

Rager, J. P.

J. P. Rager, J. F. Renaud, V. T. du Montcel, Rev. Sci. Instrum. 45, 927 (1974).
[CrossRef]

J. P. Rager, J. F. Renaud, Rev. Sci. Instrum. 45, 922 (1974).
[CrossRef]

Renaud, J. F.

J. P. Rager, J. F. Renaud, Rev. Sci. Instrum. 45, 922 (1974).
[CrossRef]

J. P. Rager, J. F. Renaud, V. T. du Montcel, Rev. Sci. Instrum. 45, 927 (1974).
[CrossRef]

Rottman, G. J.

H. W. Moos, G. J. Rottman, Astrophys. J. 174, L73 (1972).
[CrossRef]

G. J. Rottman, LASP, U. Colorado, private communication.

Ruggieri, D. J.

D. J. Ruggieri, IEEE Trans. Nucl. Sci. NS-19, 3 (1972).

Stecher, T. P.

R. C. Bohlin, P. A. Marionni, T. P. Stecher, Astrophys. J. 202, 415 (1975).
[CrossRef]

Stone, E. J.

G. M. Lawrence, E. J. Stone, Rev. Sci. Instrum. 46, 432 (1975).
[CrossRef]

Timothy, J. G.

J. G. Timothy, R. L. Bybee, Rev. Sci. Instrum. 46, 1615 (1975).
[CrossRef]

J. G. Timothy, R. L. Bybee, Appl. Opt. 14, 1632 (1975).
[CrossRef] [PubMed]

J. G. Timothy, Rev. Sci. Instrum. 45, 834 (1974).
[CrossRef]

J. G. Timothy, Rev. Sci. Instrum. 44, 207 (1973).
[CrossRef]

Vibrans, G. E.

G. E. Vibrans, M.I.T. Lincoln Laboratory, Technical Report 308 (1963).

Vitz, R. C.

R. C. Vitz, H. Weiser, H. W. Moos, A. Weinstein, E. S. Warden, Astrophys. J. 205, L35 (1976).
[CrossRef]

H. W. Moos, R. C. Vitz, J. R. Barry, J. L. Buckley, Appl. Opt. 9, 601 (1970).
[CrossRef] [PubMed]

Warden, E. S.

R. C. Vitz, H. Weiser, H. W. Moos, A. Weinstein, E. S. Warden, Astrophys. J. 205, L35 (1976).
[CrossRef]

Weinstein, A.

R. C. Vitz, H. Weiser, H. W. Moos, A. Weinstein, E. S. Warden, Astrophys. J. 205, L35 (1976).
[CrossRef]

A. Weinstein, in preparation.

Weiser, H.

R. C. Vitz, H. Weiser, H. W. Moos, A. Weinstein, E. S. Warden, Astrophys. J. 205, L35 (1976).
[CrossRef]

Appl. Opt. (5)

Astrophys. J. (3)

R. C. Vitz, H. Weiser, H. W. Moos, A. Weinstein, E. S. Warden, Astrophys. J. 205, L35 (1976).
[CrossRef]

H. W. Moos, G. J. Rottman, Astrophys. J. 174, L73 (1972).
[CrossRef]

R. C. Bohlin, P. A. Marionni, T. P. Stecher, Astrophys. J. 202, 415 (1975).
[CrossRef]

IEEE Trans. Nucl. Sci. (1)

D. J. Ruggieri, IEEE Trans. Nucl. Sci. NS-19, 3 (1972).

J. Geophys. Res. (1)

W. G. Fastie, H. M. Crosswhite, D. F. Heath, J. Geophys. Res. 69, 4129 (1964).
[CrossRef]

Phys. Rev. (1)

S. W. Duckett, P. H. Metzger, Phys. Rev. 137A, 953 (1965).
[CrossRef]

Rev. Sci. Instrum. (6)

J. G. Timothy, Rev. Sci. Instrum. 44, 207 (1973).
[CrossRef]

J. G. Timothy, Rev. Sci. Instrum. 45, 834 (1974).
[CrossRef]

J. G. Timothy, R. L. Bybee, Rev. Sci. Instrum. 46, 1615 (1975).
[CrossRef]

J. P. Rager, J. F. Renaud, Rev. Sci. Instrum. 45, 922 (1974).
[CrossRef]

J. P. Rager, J. F. Renaud, V. T. du Montcel, Rev. Sci. Instrum. 45, 927 (1974).
[CrossRef]

G. M. Lawrence, E. J. Stone, Rev. Sci. Instrum. 46, 432 (1975).
[CrossRef]

Space Sci. Instrum. (1)

J. W. Giles, W. R. McKinney, C. S. Freer, H. W. Moos, Space Sci. Instrum. 1, 51 (1975).

Other (6)

R. Hutter, in Beams with a Space Charge, Vol. 2 of Focusing of Charged Particles, A. Septier, Ed. (Academic, New York, 1967).

G. E. Vibrans, M.I.T. Lincoln Laboratory, Technical Report 308 (1963).

L. G. Jacchia, Smithsonian Astrophysical Observatory, Special Report 332 (1971).

A. Weinstein, in preparation.

G. J. Rottman, LASP, U. Colorado, private communication.

W. McClintock, Johns Hopkins U., private communication.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

36-cm diam telescope with evacuated dual channel spectrograph. Telescope image stabilization of 1 sec of arc is achieved by means of a star tracker (not shown), which servocontrols the secondary mirror. One of the spectrograph channels is in the plane of the drawing; the other channel is below (see Fig. 2 for detail). The spectrograph sealed door is opened at altitude by a motor-driven mechanism (not shown) and closed prior to reentry into the atmosphere, maintaining the vacuum integrity of the spectrograph.

Fig. 2
Fig. 2

Cross section of dual channel spectrograph. Only the chief ray of either channel is shown. Entrance slits are imaged onto the input surface of front MCP plate. Two slit sizes are selectable in flight for the target channel.

Fig. 3
Fig. 3

Detail of MCP chevron and resistive strip anode.

Fig. 4
Fig. 4

λ vs bin calibration curve. The instrumental full width at half maximum of a spectral line is indicated in bin space and in wavelength space.

Fig. 5
Fig. 5

Preflight effective area calibration curve. Uncertainties are discussed in the text.

Fig. 6
Fig. 6

Time history of spectrograph QT (detector quantum efficiency × spectrograph transmission) vs wavelength. Error bars for the data points have been omitted for clarity of the picture; uncertainties are discussed in the test.

Fig. 7
Fig. 7

Typical count rate frequency distribution. Sample distributions were also obtained for lower mean count rates and for different wavelengths; all show statistical agreement between the data and a theoretical Poisson distribution at least as good as the sample in this figure.

Fig. 8
Fig. 8

Far uv spectrum of Arcturus (αBoo). The upper spectrum was taken with a single slit scanning prism spectrometer flown on a previous rocket. The lower spectrum was obtained with the present instrument. The spectra represent sliding sums over a width approximately equal to the resolution of either instrument (full width at half maximum of a spectral line); thus the peak value of a line in the slid spectrum corresponds to the total number of counts between the half maximum points of that line. The HI emission line at 1216 Å (Lyman α) in each spectrum includes terrestrial airglow; its contribution to the Arcturus HI emission is different for the two spectra. Thus a direct comparison is only possible for features other than Lyman a, where airglow is negligible. The vertical bars at 1280 Å show the number of counts between the half maximum points of a line, which an incident flux of 0.1 photon cm−2 sec−1 at that wavelength would generate in the instrument. Note that this flux corresponds to 76 counts for the present instrument and only 3.2 counts (and thus comparable with the noise scatter) for the single slit instrument.

Metrics