Abstract

An integrating camera based on a cooled silicon vidicon detector is briefly described. A treatment is given of the capacitive lag which limits the performance for small signals. The remedy is to alter the cathode voltage after erase to place a pedestal of about 105 electrons/pixel under the signal. Test results indicate that the background noise level cannot be reduced below 600 electrons/pixel in a processed frame, and values may approach 1000. Despite these limitations, the vidicon is found to be a useful and sensitive detector.

© 1976 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. B. McCord, J. A. Westphal, Appl. Opt. 11, 522 (1972).
    [CrossRef] [PubMed]
  2. T. B. McCord, M. J. Frankston, Appl. Opt. 14, 1437 (1975).
    [CrossRef] [PubMed]
  3. J. A. Westphal, J. Kristian, A. Sandage, Astrophys. J. Lett. 197, L95 (1975).
    [CrossRef]
  4. C. H. Nowlin, J. L. Blankenship, Rev. Sci. Instrum. 36, 1830 (1965).
    [CrossRef]
  5. D. M. Hunten, B. E. Nelson, C. J. Stump, Appl. Opt. 15, 2264 (1976).
    [CrossRef] [PubMed]
  6. R. W. Redington, IRE Trans. Electron Devices ED-4, 220 (1957).
    [CrossRef]
  7. R. M. Logan, R. Watton, Infrared Phys. 12, 17 (1972).
    [CrossRef]
  8. R. L. Beurle, Proc. IEEE 110, 1350 (1963).
  9. R. L. Beurle, Proc. IEEE 110, 1735 (1963).
  10. S. A. Colgate, E. P. Moore, J. Colburn, Appl. Opt. 14, 1429 (1975).
    [CrossRef] [PubMed]
  11. A. M. Title, Solar Phys. 35, 233 (1974).
    [CrossRef]
  12. D. W. Latham, in Astrophysics, N. Carleton, Ed. (Academic, New York, 1974), Part A, p. 221.
  13. W. C. Livingston, J. Harvey, C. Slaughter, D. Trumbo, Appl. Opt. 15, 40 (1976).
    [CrossRef] [PubMed]
  14. D. M. Hunten, Sci. Am. 233(3), 130 (1975); in The Solar System (W. H. Freeman, San Francisco, 1975), p. 105.
    [CrossRef]

1976 (2)

1975 (4)

D. M. Hunten, Sci. Am. 233(3), 130 (1975); in The Solar System (W. H. Freeman, San Francisco, 1975), p. 105.
[CrossRef]

T. B. McCord, M. J. Frankston, Appl. Opt. 14, 1437 (1975).
[CrossRef] [PubMed]

J. A. Westphal, J. Kristian, A. Sandage, Astrophys. J. Lett. 197, L95 (1975).
[CrossRef]

S. A. Colgate, E. P. Moore, J. Colburn, Appl. Opt. 14, 1429 (1975).
[CrossRef] [PubMed]

1974 (1)

A. M. Title, Solar Phys. 35, 233 (1974).
[CrossRef]

1972 (2)

1965 (1)

C. H. Nowlin, J. L. Blankenship, Rev. Sci. Instrum. 36, 1830 (1965).
[CrossRef]

1963 (2)

R. L. Beurle, Proc. IEEE 110, 1350 (1963).

R. L. Beurle, Proc. IEEE 110, 1735 (1963).

1957 (1)

R. W. Redington, IRE Trans. Electron Devices ED-4, 220 (1957).
[CrossRef]

Beurle, R. L.

R. L. Beurle, Proc. IEEE 110, 1350 (1963).

R. L. Beurle, Proc. IEEE 110, 1735 (1963).

Blankenship, J. L.

C. H. Nowlin, J. L. Blankenship, Rev. Sci. Instrum. 36, 1830 (1965).
[CrossRef]

Colburn, J.

Colgate, S. A.

Frankston, M. J.

Harvey, J.

Hunten, D. M.

D. M. Hunten, B. E. Nelson, C. J. Stump, Appl. Opt. 15, 2264 (1976).
[CrossRef] [PubMed]

D. M. Hunten, Sci. Am. 233(3), 130 (1975); in The Solar System (W. H. Freeman, San Francisco, 1975), p. 105.
[CrossRef]

Kristian, J.

J. A. Westphal, J. Kristian, A. Sandage, Astrophys. J. Lett. 197, L95 (1975).
[CrossRef]

Latham, D. W.

D. W. Latham, in Astrophysics, N. Carleton, Ed. (Academic, New York, 1974), Part A, p. 221.

Livingston, W. C.

Logan, R. M.

R. M. Logan, R. Watton, Infrared Phys. 12, 17 (1972).
[CrossRef]

McCord, T. B.

Moore, E. P.

Nelson, B. E.

Nowlin, C. H.

C. H. Nowlin, J. L. Blankenship, Rev. Sci. Instrum. 36, 1830 (1965).
[CrossRef]

Redington, R. W.

R. W. Redington, IRE Trans. Electron Devices ED-4, 220 (1957).
[CrossRef]

Sandage, A.

J. A. Westphal, J. Kristian, A. Sandage, Astrophys. J. Lett. 197, L95 (1975).
[CrossRef]

Slaughter, C.

Stump, C. J.

Title, A. M.

A. M. Title, Solar Phys. 35, 233 (1974).
[CrossRef]

Trumbo, D.

Watton, R.

R. M. Logan, R. Watton, Infrared Phys. 12, 17 (1972).
[CrossRef]

Westphal, J. A.

J. A. Westphal, J. Kristian, A. Sandage, Astrophys. J. Lett. 197, L95 (1975).
[CrossRef]

T. B. McCord, J. A. Westphal, Appl. Opt. 11, 522 (1972).
[CrossRef] [PubMed]

Appl. Opt. (5)

Astrophys. J. Lett. (1)

J. A. Westphal, J. Kristian, A. Sandage, Astrophys. J. Lett. 197, L95 (1975).
[CrossRef]

Infrared Phys. (1)

R. M. Logan, R. Watton, Infrared Phys. 12, 17 (1972).
[CrossRef]

IRE Trans. Electron Devices (1)

R. W. Redington, IRE Trans. Electron Devices ED-4, 220 (1957).
[CrossRef]

Proc. IEEE (2)

R. L. Beurle, Proc. IEEE 110, 1350 (1963).

R. L. Beurle, Proc. IEEE 110, 1735 (1963).

Rev. Sci. Instrum. (1)

C. H. Nowlin, J. L. Blankenship, Rev. Sci. Instrum. 36, 1830 (1965).
[CrossRef]

Sci. Am. (1)

D. M. Hunten, Sci. Am. 233(3), 130 (1975); in The Solar System (W. H. Freeman, San Francisco, 1975), p. 105.
[CrossRef]

Solar Phys. (1)

A. M. Title, Solar Phys. 35, 233 (1974).
[CrossRef]

Other (1)

D. W. Latham, in Astrophysics, N. Carleton, Ed. (Academic, New York, 1974), Part A, p. 221.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Block diagram of the camera and data-acquisition system.

Fig. 2
Fig. 2

The beam-landing curve obtained for an 8542 vidicon, compared with Eq. (1) and its asymptotes.

Fig. 3
Fig. 3

The detective quantum efficiency for several values of detector noise D and true quantum efficiency Q.

Fig. 4
Fig. 4

Spectra of Sirius and λ And. The width of the figure is approximately 18 Å. A running mean with (1,2,1) weights has been applied.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

I = I o e b V 1 + e b V .
I e = I o e b V e .
I e + Δ I = I o e b ( V e + Δ V ) = I e e b Δ V ,
Δ I = I e ( e b Δ V - 1 ) I e b Δ V ,
Q ^ = Q 2 N P D 2 + Q N P = Q N D 2 + N .
Q ^ Q N D 2 = s / n D ,

Metrics