Abstract

A general approach to the design of broadband dielectric multilayer coatings for Fabry-Perot spectroscopy is described, with specific application to the design of coatings for the pepsios spectrometer. Designs are presented for reflectivities of 91.5 ± 1.0% over spectral ranges (λmaxmin) from 1.3 to 2.0.

© 1976 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. E. Mack, D. P. McNutt, F. L. Roesler, R. Chabbal, Appl. Opt. 2, 873 (1963).
  2. J. T. Trauger, Thesis, University of Wisconsin-Madison (1973).
  3. R. Chabbal, J. Res. C.N.R.S. 24, 138 (1953).
  4. F. L. Roesler, Appl. Opt. 8, 829 (1969).
    [CrossRef] [PubMed]
  5. R. W. Stanley, K. L. Andrew, J. Opt. Soc. Am. 54, 625 (1964).
    [CrossRef]
  6. P. W. Baumeister, F. A. Jenkins, J. Opt. Soc. Am. 47, 57 (1957).
    [CrossRef]
  7. P. H. Lissberger, W. L. Wilcock, J. Opt. Soc. Am. 49, 126 (1959).
    [CrossRef]
  8. P. Giacomo, J. Phys. Rad. 19, 307 (1958).
    [CrossRef]
  9. J. V. Ramsay, P. E. Ciddor, Appl. Opt. 6, 2003 (1967).
    [CrossRef] [PubMed]
  10. P. E. Ciddor, Appl. Opt. 7, 2328 (1968).
    [CrossRef] [PubMed]
  11. A. E. Ennos, Appl. Opt. 5, 51 (1966).
    [CrossRef] [PubMed]
  12. Z. N. Elsner, Opt. Spectosc. 17, 238 (1964).
  13. P. W. Baumeister, J. Opt. Soc. Am. 52, 1149 (1962).
    [CrossRef]
  14. J. A. Dobrowolski, Appl. Opt. 4, 937 (1965).
    [CrossRef]
  15. O. S. Heavens, H. M. Liddell, Opt. Acta 15, 129 (1968).
  16. E. Pelletier, Thése, C. N. R. S., A.O. 6051 Paris (1970).
  17. H. Zycha, Appl. Opt. 12, 979 (1973).
    [CrossRef] [PubMed]
  18. P. W. Baumeister, J. M. Stone, J. Opt. Soc. Am. 46, 228, (1956).
    [CrossRef]
  19. M. J. D. Powell, Comput. J. 7, 303 (1965).
    [CrossRef]
  20. J. A. Nelder, R. Mead, Comput. J. 7, 308 (1965).
    [CrossRef]
  21. D. L. Marquardt, J. Soc. Indust. Appl. Math. 11, 431 (1963).
    [CrossRef]
  22. H. A. MacLeod, Opt. Acta 19, 1 (1972).
    [CrossRef]
  23. P. Bousquet, A. Fornier, R. Kowalczyk, E. Pelletier, P. Roche, Thin Solid Films 13, 285 (1972).
    [CrossRef]

1973 (1)

1972 (2)

H. A. MacLeod, Opt. Acta 19, 1 (1972).
[CrossRef]

P. Bousquet, A. Fornier, R. Kowalczyk, E. Pelletier, P. Roche, Thin Solid Films 13, 285 (1972).
[CrossRef]

1969 (1)

1968 (2)

P. E. Ciddor, Appl. Opt. 7, 2328 (1968).
[CrossRef] [PubMed]

O. S. Heavens, H. M. Liddell, Opt. Acta 15, 129 (1968).

1967 (1)

1966 (1)

1965 (3)

J. A. Dobrowolski, Appl. Opt. 4, 937 (1965).
[CrossRef]

M. J. D. Powell, Comput. J. 7, 303 (1965).
[CrossRef]

J. A. Nelder, R. Mead, Comput. J. 7, 308 (1965).
[CrossRef]

1964 (2)

1963 (2)

J. E. Mack, D. P. McNutt, F. L. Roesler, R. Chabbal, Appl. Opt. 2, 873 (1963).

D. L. Marquardt, J. Soc. Indust. Appl. Math. 11, 431 (1963).
[CrossRef]

1962 (1)

1959 (1)

1958 (1)

P. Giacomo, J. Phys. Rad. 19, 307 (1958).
[CrossRef]

1957 (1)

1956 (1)

1953 (1)

R. Chabbal, J. Res. C.N.R.S. 24, 138 (1953).

Andrew, K. L.

Baumeister, P. W.

Bousquet, P.

P. Bousquet, A. Fornier, R. Kowalczyk, E. Pelletier, P. Roche, Thin Solid Films 13, 285 (1972).
[CrossRef]

Chabbal, R.

Ciddor, P. E.

Dobrowolski, J. A.

Elsner, Z. N.

Z. N. Elsner, Opt. Spectosc. 17, 238 (1964).

Ennos, A. E.

Fornier, A.

P. Bousquet, A. Fornier, R. Kowalczyk, E. Pelletier, P. Roche, Thin Solid Films 13, 285 (1972).
[CrossRef]

Giacomo, P.

P. Giacomo, J. Phys. Rad. 19, 307 (1958).
[CrossRef]

Heavens, O. S.

O. S. Heavens, H. M. Liddell, Opt. Acta 15, 129 (1968).

Jenkins, F. A.

Kowalczyk, R.

P. Bousquet, A. Fornier, R. Kowalczyk, E. Pelletier, P. Roche, Thin Solid Films 13, 285 (1972).
[CrossRef]

Liddell, H. M.

O. S. Heavens, H. M. Liddell, Opt. Acta 15, 129 (1968).

Lissberger, P. H.

Mack, J. E.

MacLeod, H. A.

H. A. MacLeod, Opt. Acta 19, 1 (1972).
[CrossRef]

Marquardt, D. L.

D. L. Marquardt, J. Soc. Indust. Appl. Math. 11, 431 (1963).
[CrossRef]

McNutt, D. P.

Mead, R.

J. A. Nelder, R. Mead, Comput. J. 7, 308 (1965).
[CrossRef]

Nelder, J. A.

J. A. Nelder, R. Mead, Comput. J. 7, 308 (1965).
[CrossRef]

Pelletier, E.

P. Bousquet, A. Fornier, R. Kowalczyk, E. Pelletier, P. Roche, Thin Solid Films 13, 285 (1972).
[CrossRef]

E. Pelletier, Thése, C. N. R. S., A.O. 6051 Paris (1970).

Powell, M. J. D.

M. J. D. Powell, Comput. J. 7, 303 (1965).
[CrossRef]

Ramsay, J. V.

Roche, P.

P. Bousquet, A. Fornier, R. Kowalczyk, E. Pelletier, P. Roche, Thin Solid Films 13, 285 (1972).
[CrossRef]

Roesler, F. L.

Stanley, R. W.

Stone, J. M.

Trauger, J. T.

J. T. Trauger, Thesis, University of Wisconsin-Madison (1973).

Wilcock, W. L.

Zycha, H.

Appl. Opt. (7)

Comput. J. (2)

M. J. D. Powell, Comput. J. 7, 303 (1965).
[CrossRef]

J. A. Nelder, R. Mead, Comput. J. 7, 308 (1965).
[CrossRef]

J. Opt. Soc. Am. (5)

J. Phys. Rad. (1)

P. Giacomo, J. Phys. Rad. 19, 307 (1958).
[CrossRef]

J. Res. C.N.R.S. (1)

R. Chabbal, J. Res. C.N.R.S. 24, 138 (1953).

J. Soc. Indust. Appl. Math. (1)

D. L. Marquardt, J. Soc. Indust. Appl. Math. 11, 431 (1963).
[CrossRef]

Opt. Acta (2)

H. A. MacLeod, Opt. Acta 19, 1 (1972).
[CrossRef]

O. S. Heavens, H. M. Liddell, Opt. Acta 15, 129 (1968).

Opt. Spectosc. (1)

Z. N. Elsner, Opt. Spectosc. 17, 238 (1964).

Thin Solid Films (1)

P. Bousquet, A. Fornier, R. Kowalczyk, E. Pelletier, P. Roche, Thin Solid Films 13, 285 (1972).
[CrossRef]

Other (2)

E. Pelletier, Thése, C. N. R. S., A.O. 6051 Paris (1970).

J. T. Trauger, Thesis, University of Wisconsin-Madison (1973).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Refractive indices of the substrate and thin film layer materials. These nominal values have been adopted in the calculations of multilayer characteristics presented here.

Fig. 2
Fig. 2

Calculated reflectance profiles of classical quarter-wave mirror coatings composed of zinc sulfide and cryolite layers on a fused silica substrate. The number of quarter-wave layers in each coating is five, six, and seven, respectively, in order of increasing peak reflectance at 550 nm.

Fig. 3
Fig. 3

Calculated reflectance profiles for quarter-wave coatings modified by the addition of several half-wave layers. The dashed curve corresponds to a nine layer combination and the solid curve to an eleven layer design. Both layer configurations are listed in Table I.

Fig. 4
Fig. 4

Calculated reflectance profile obtained by refinement of a classical seven layer quarter-wave coating. The thickness uniformity tolerance τ for light reflected at the air interface is also shown. The corresponding multilayer configuration is specified in Table I.

Fig. 5
Fig. 5

Calculated profile obtained by refinement of the eleven layer half- and quarter-wave coating listed in Table I and illustrated in Fig. 3 (solid curve). Also shown is the thickness uniformity tolerance τ for light reflected at the air interface. The multilayer configuration is listed in Table I.

Fig. 6
Fig. 6

Composite showing the calculated reflectance profiles for coating designs derived from initial configurations with layers that decrease monotonically in optical thickness from the substrate to the incident medium. Shown in order from bottom to top in the figure are thirteen, fourteen, fifteen, and sixteen layer designs, respectively. Layer configurations are listed in Table II.

Fig. 7
Fig. 7

Calculated reflectance profile for the sixteen layer coating specified in Table II. The thickness uniformity tolerance τ for light reflected at the air interface is also shown. The useful range (λmaxmin) = 2.0 extends from 450 nm to 900 nm with a reflectance of 91.5 ± 1.0%.

Tables (2)

Tables Icon

Table I Layer Configurationsa for Multilayers Shown in Figs. 3, 4, and 5

Tables Icon

Table II Layer Configurationsa for Multilayers Shown. in Figs. 6 and 7

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

A = ( 1 - A 1 - R ) 2 / [ 1 + 4 N 2 π - 2 sin 2 ( 2 π n l σ cos θ - ϕ ) ] .
( λ max / λ min ) < [ π / cos - 1 ( n H - n L n H + n L ) ] - 1 ,

Metrics