Abstract

In this paper experiments with reactive evaporation of the starting materials Ti, TiO, Ti2O3, Ti3O5, and TiO2 to obtain nonabsorbing TiO2 films are under discussion. For the starting materials TiO and Ti3O5 the dependence of the TiO2 film refractive index on the substrate temperature, oxygen pressure, and deposition rate was measured. For TiO dispersion curves of the resulting TiO2 films as a function of the substrate temperature during film formation were determined. The successive evaporation of the different starting materials resulted in the formation of λ/4 TiO2 films with different refractive indices. This phenomenon was most obvious during the first evaporation. It disappeared after several evaporations in two groups of TiO2 films with different refractive indices. From the beginning only the starting materials Ti and Ti3O5 resulted in TiO2 films with constant refractive indices. The first material produced a high, the latter a lower film index. Depending on the number of evaporations performed, both types of TiO2 films can be obtained with TiO. The films and residues in the crucibles were also subjected to chemical analyses. An attempt was made to explain the optical properties of the resulting TiO2 films with regard to crystal structure, chemical composition, packing density influenced by the molecular composition of the vapor beam, chemical reaction with the crucible, substrate temperature, O2 pressure, and deposition rate.

© 1976 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Hass, J. Am. Ceram. Soc. 33, 353 (1950).
    [CrossRef]
  2. G. Hass, Vacuum 2, 331 (1952).
    [CrossRef]
  3. C. H. Cartwright, A. F. Turner, Phys. Rev. A 55, 1128 (1939).
  4. W. Geffcken, Glastechn. Ber. 24, 143 (1951).
  5. Jenaer Glaswerk Schott u. Gen., German Patent736,411.
  6. H. A. Turner, L. B. Lockhart, J. Opt. Soc. Am. 36, 701 (1946).
    [CrossRef]
  7. A. P. Bradford, G. Hass, J. Opt. Soc. Am. 43, 326 (1953).
  8. L. Holland, Vacuum Deposition of Thin Films (Chapman and Hall, London, 1956).
  9. M. Auwärter, U.S. Patent2,920,002.
  10. E. Ritter, J. Vac. Sci. Technol. 3, 225 (1966).
    [CrossRef]
  11. W. Reichelt, in Transactions of the Third International Vacuum Congress, Stuttgart 1965, H. Adam, Ed. (Pergamon, London, 1967), Vol 2, Part 1.
  12. J. Berkowitz, W. A. Chupka, M. G. Inghram, J. Phys. Chem. 61, 1569 (1957).
    [CrossRef]
  13. P. W. Gilles, K. D. Carlson, H. F. Franzen, P. G. Wahlbeck, J. Chem. Phys. 46, 2461 (1967).
    [CrossRef]
  14. P. G. Wahlbeck, P. W. Gilles, J. Chem. Phys. 46, 2465 (1967).
    [CrossRef]
  15. P. W. Gilles, H. F. Franzen, G. D. Stone, P. G. Wahlbeck, J. Chem. Phys. 48, 1938 (1968).
    [CrossRef]
  16. H. K. Pulker, U.S. Patent3,927,228.
  17. H. K. Pulker, Habilitation paper, University of Innsbruck, Austria (1973).
  18. G. Bauer, Am. Phys. 19, 434 (1934).
  19. D. Hacman, A. Keutschegger, Optik 37, 391 (1973).
  20. B. Dudenhausen, G. Möllenstedt, Z. Angew. Phys. 27, 191 (1969).
  21. M. Yokozawa et al., Jpn. J. Appl. Phys. 7, 96 (1968).
    [CrossRef]
  22. Y. Katsuta et al., Thin Solid Films 18, 53 (1973).
    [CrossRef]
  23. K. L. Weiner, Mineralogisches Institut, Universität Karlsruhe; private communication.

1973 (2)

D. Hacman, A. Keutschegger, Optik 37, 391 (1973).

Y. Katsuta et al., Thin Solid Films 18, 53 (1973).
[CrossRef]

1969 (1)

B. Dudenhausen, G. Möllenstedt, Z. Angew. Phys. 27, 191 (1969).

1968 (2)

M. Yokozawa et al., Jpn. J. Appl. Phys. 7, 96 (1968).
[CrossRef]

P. W. Gilles, H. F. Franzen, G. D. Stone, P. G. Wahlbeck, J. Chem. Phys. 48, 1938 (1968).
[CrossRef]

1967 (2)

P. W. Gilles, K. D. Carlson, H. F. Franzen, P. G. Wahlbeck, J. Chem. Phys. 46, 2461 (1967).
[CrossRef]

P. G. Wahlbeck, P. W. Gilles, J. Chem. Phys. 46, 2465 (1967).
[CrossRef]

1966 (1)

E. Ritter, J. Vac. Sci. Technol. 3, 225 (1966).
[CrossRef]

1957 (1)

J. Berkowitz, W. A. Chupka, M. G. Inghram, J. Phys. Chem. 61, 1569 (1957).
[CrossRef]

1953 (1)

A. P. Bradford, G. Hass, J. Opt. Soc. Am. 43, 326 (1953).

1952 (1)

G. Hass, Vacuum 2, 331 (1952).
[CrossRef]

1951 (1)

W. Geffcken, Glastechn. Ber. 24, 143 (1951).

1950 (1)

G. Hass, J. Am. Ceram. Soc. 33, 353 (1950).
[CrossRef]

1946 (1)

1939 (1)

C. H. Cartwright, A. F. Turner, Phys. Rev. A 55, 1128 (1939).

1934 (1)

G. Bauer, Am. Phys. 19, 434 (1934).

Auwärter, M.

M. Auwärter, U.S. Patent2,920,002.

Bauer, G.

G. Bauer, Am. Phys. 19, 434 (1934).

Berkowitz, J.

J. Berkowitz, W. A. Chupka, M. G. Inghram, J. Phys. Chem. 61, 1569 (1957).
[CrossRef]

Bradford, A. P.

A. P. Bradford, G. Hass, J. Opt. Soc. Am. 43, 326 (1953).

Carlson, K. D.

P. W. Gilles, K. D. Carlson, H. F. Franzen, P. G. Wahlbeck, J. Chem. Phys. 46, 2461 (1967).
[CrossRef]

Cartwright, C. H.

C. H. Cartwright, A. F. Turner, Phys. Rev. A 55, 1128 (1939).

Chupka, W. A.

J. Berkowitz, W. A. Chupka, M. G. Inghram, J. Phys. Chem. 61, 1569 (1957).
[CrossRef]

Dudenhausen, B.

B. Dudenhausen, G. Möllenstedt, Z. Angew. Phys. 27, 191 (1969).

Franzen, H. F.

P. W. Gilles, H. F. Franzen, G. D. Stone, P. G. Wahlbeck, J. Chem. Phys. 48, 1938 (1968).
[CrossRef]

P. W. Gilles, K. D. Carlson, H. F. Franzen, P. G. Wahlbeck, J. Chem. Phys. 46, 2461 (1967).
[CrossRef]

Geffcken, W.

W. Geffcken, Glastechn. Ber. 24, 143 (1951).

Gilles, P. W.

P. W. Gilles, H. F. Franzen, G. D. Stone, P. G. Wahlbeck, J. Chem. Phys. 48, 1938 (1968).
[CrossRef]

P. W. Gilles, K. D. Carlson, H. F. Franzen, P. G. Wahlbeck, J. Chem. Phys. 46, 2461 (1967).
[CrossRef]

P. G. Wahlbeck, P. W. Gilles, J. Chem. Phys. 46, 2465 (1967).
[CrossRef]

Hacman, D.

D. Hacman, A. Keutschegger, Optik 37, 391 (1973).

Hass, G.

A. P. Bradford, G. Hass, J. Opt. Soc. Am. 43, 326 (1953).

G. Hass, Vacuum 2, 331 (1952).
[CrossRef]

G. Hass, J. Am. Ceram. Soc. 33, 353 (1950).
[CrossRef]

Holland, L.

L. Holland, Vacuum Deposition of Thin Films (Chapman and Hall, London, 1956).

Inghram, M. G.

J. Berkowitz, W. A. Chupka, M. G. Inghram, J. Phys. Chem. 61, 1569 (1957).
[CrossRef]

Katsuta, Y.

Y. Katsuta et al., Thin Solid Films 18, 53 (1973).
[CrossRef]

Keutschegger, A.

D. Hacman, A. Keutschegger, Optik 37, 391 (1973).

Lockhart, L. B.

Möllenstedt, G.

B. Dudenhausen, G. Möllenstedt, Z. Angew. Phys. 27, 191 (1969).

Pulker, H. K.

H. K. Pulker, U.S. Patent3,927,228.

H. K. Pulker, Habilitation paper, University of Innsbruck, Austria (1973).

Reichelt, W.

W. Reichelt, in Transactions of the Third International Vacuum Congress, Stuttgart 1965, H. Adam, Ed. (Pergamon, London, 1967), Vol 2, Part 1.

Ritter, E.

E. Ritter, J. Vac. Sci. Technol. 3, 225 (1966).
[CrossRef]

Stone, G. D.

P. W. Gilles, H. F. Franzen, G. D. Stone, P. G. Wahlbeck, J. Chem. Phys. 48, 1938 (1968).
[CrossRef]

Turner, A. F.

C. H. Cartwright, A. F. Turner, Phys. Rev. A 55, 1128 (1939).

Turner, H. A.

Wahlbeck, P. G.

P. W. Gilles, H. F. Franzen, G. D. Stone, P. G. Wahlbeck, J. Chem. Phys. 48, 1938 (1968).
[CrossRef]

P. W. Gilles, K. D. Carlson, H. F. Franzen, P. G. Wahlbeck, J. Chem. Phys. 46, 2461 (1967).
[CrossRef]

P. G. Wahlbeck, P. W. Gilles, J. Chem. Phys. 46, 2465 (1967).
[CrossRef]

Weiner, K. L.

K. L. Weiner, Mineralogisches Institut, Universität Karlsruhe; private communication.

Yokozawa, M.

M. Yokozawa et al., Jpn. J. Appl. Phys. 7, 96 (1968).
[CrossRef]

Am. Phys. (1)

G. Bauer, Am. Phys. 19, 434 (1934).

Glastechn. Ber. (1)

W. Geffcken, Glastechn. Ber. 24, 143 (1951).

J. Am. Ceram. Soc. (1)

G. Hass, J. Am. Ceram. Soc. 33, 353 (1950).
[CrossRef]

J. Chem. Phys. (3)

P. W. Gilles, K. D. Carlson, H. F. Franzen, P. G. Wahlbeck, J. Chem. Phys. 46, 2461 (1967).
[CrossRef]

P. G. Wahlbeck, P. W. Gilles, J. Chem. Phys. 46, 2465 (1967).
[CrossRef]

P. W. Gilles, H. F. Franzen, G. D. Stone, P. G. Wahlbeck, J. Chem. Phys. 48, 1938 (1968).
[CrossRef]

J. Opt. Soc. Am. (2)

A. P. Bradford, G. Hass, J. Opt. Soc. Am. 43, 326 (1953).

H. A. Turner, L. B. Lockhart, J. Opt. Soc. Am. 36, 701 (1946).
[CrossRef]

J. Phys. Chem. (1)

J. Berkowitz, W. A. Chupka, M. G. Inghram, J. Phys. Chem. 61, 1569 (1957).
[CrossRef]

J. Vac. Sci. Technol. (1)

E. Ritter, J. Vac. Sci. Technol. 3, 225 (1966).
[CrossRef]

Jpn. J. Appl. Phys. (1)

M. Yokozawa et al., Jpn. J. Appl. Phys. 7, 96 (1968).
[CrossRef]

Optik (1)

D. Hacman, A. Keutschegger, Optik 37, 391 (1973).

Phys. Rev. A (1)

C. H. Cartwright, A. F. Turner, Phys. Rev. A 55, 1128 (1939).

Thin Solid Films (1)

Y. Katsuta et al., Thin Solid Films 18, 53 (1973).
[CrossRef]

Vacuum (1)

G. Hass, Vacuum 2, 331 (1952).
[CrossRef]

Z. Angew. Phys. (1)

B. Dudenhausen, G. Möllenstedt, Z. Angew. Phys. 27, 191 (1969).

Other (7)

K. L. Weiner, Mineralogisches Institut, Universität Karlsruhe; private communication.

W. Reichelt, in Transactions of the Third International Vacuum Congress, Stuttgart 1965, H. Adam, Ed. (Pergamon, London, 1967), Vol 2, Part 1.

L. Holland, Vacuum Deposition of Thin Films (Chapman and Hall, London, 1956).

M. Auwärter, U.S. Patent2,920,002.

H. K. Pulker, U.S. Patent3,927,228.

H. K. Pulker, Habilitation paper, University of Innsbruck, Austria (1973).

Jenaer Glaswerk Schott u. Gen., German Patent736,411.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

Refractive index of TiO2 films produced by successive evaporations of different titanium-oxygen phases:

Fig. 2
Fig. 2

Auger profile analysis of TiO2 films produced by the evaporation of different starting materials and varying numbers of evaporations. W % = weight percent WO3 in the TiO2 film

Tables (5)

Tables Icon

Table I Refractive Index of TiO2 Films (nf) as a Function of the Substrate Temperature During Film Formation (Ts)

Tables Icon

Table II Refractive Index of TiO2 Films (nf) as a Function of the Oxygen Partial Pressure (Po2) During Reactive Evaporation

Tables Icon

Table III Refractive Index of TiO2 Films (nf) as a Function of the Deposition Rate (r).

Tables Icon

Table IV Refractive Index of TiO2 Films (nf) Produced by Reactive Deposition on Glass Substrates of Different Temperatures as Function of the Wavelength (λ)

Tables Icon

Table V Chemical Analyses of Materials and Thin Films

Metrics