Abstract

No abstract available.

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. The manufacturer’s literature, Coherent Radiation model 41 brochure, specifies output to be linearly polarized. However, without an intracavity grating the laser output is elliptically polarized.
  2. H. K. V. Lotsch, W. C. Davis, Appl. Opt. 9, 2725 (1970).
    [CrossRef] [PubMed]
  3. H. Kogelnik, Bell Syst. Tech. J. 44, 455 (1965).
  4. J. P. Gordon, H. Kogelnik, Bell Syst. Tech. J. 43, 2873 (1964).
  5. F. Zernike, P. Zeeman Verh. (Martinus Nijhoff, Den Haag, 1935), p. 323.
  6. H. Gustafson, Honeywell Systems and Research Center, Minneapolis, Minnesota; private communication.

1970 (1)

1965 (1)

H. Kogelnik, Bell Syst. Tech. J. 44, 455 (1965).

1964 (1)

J. P. Gordon, H. Kogelnik, Bell Syst. Tech. J. 43, 2873 (1964).

Davis, W. C.

Gordon, J. P.

J. P. Gordon, H. Kogelnik, Bell Syst. Tech. J. 43, 2873 (1964).

Gustafson, H.

H. Gustafson, Honeywell Systems and Research Center, Minneapolis, Minnesota; private communication.

Kogelnik, H.

H. Kogelnik, Bell Syst. Tech. J. 44, 455 (1965).

J. P. Gordon, H. Kogelnik, Bell Syst. Tech. J. 43, 2873 (1964).

Lotsch, H. K. V.

Zernike, F.

F. Zernike, P. Zeeman Verh. (Martinus Nijhoff, Den Haag, 1935), p. 323.

Appl. Opt. (1)

Bell Syst. Tech. J. (2)

H. Kogelnik, Bell Syst. Tech. J. 44, 455 (1965).

J. P. Gordon, H. Kogelnik, Bell Syst. Tech. J. 43, 2873 (1964).

Other (3)

F. Zernike, P. Zeeman Verh. (Martinus Nijhoff, Den Haag, 1935), p. 323.

H. Gustafson, Honeywell Systems and Research Center, Minneapolis, Minnesota; private communication.

The manufacturer’s literature, Coherent Radiation model 41 brochure, specifies output to be linearly polarized. However, without an intracavity grating the laser output is elliptically polarized.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Transverse mode structure obtained when using flat intracavity grating for wavelength selection. The two photos represent different attempts to optimize power distribution.

Fig. 2
Fig. 2

TEM00 mode structure produced with concave intracavity grating for wavelength selection: (a) 10.6 μm; (b) 9.6 μm.

Fig. 3
Fig. 3

Transverse mode structure produced with concave intracavity grating. Cavity adjusted for TEM01 to show that different modes can be controllably produced with this configuration.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

R parallel = R cos i             and            R perpendicular = R / cos i ,

Metrics