Abstract

No abstract available.

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Falk, IEEE J. Quantum Electron. QE-11, 21 (1975).
    [CrossRef]
  2. C. J. Kennedy, IEEE J. Quantum Electron. QE-11, 793 (1975).
    [CrossRef]
  3. C. J. Kennedy, IEEE J. Quantum Electron. QE-11, 857 (1975).
    [CrossRef]
  4. O. Bernecker, IEEE J. Quantum Electron. QE-9, 897 (1973).
    [CrossRef]
  5. R. C. Eden, AFAL-TR-72-343, 1973.
  6. R. S. Reynolds, Ed., AFAL-TR-73-339, 1973.

1975 (3)

J. Falk, IEEE J. Quantum Electron. QE-11, 21 (1975).
[CrossRef]

C. J. Kennedy, IEEE J. Quantum Electron. QE-11, 793 (1975).
[CrossRef]

C. J. Kennedy, IEEE J. Quantum Electron. QE-11, 857 (1975).
[CrossRef]

1973 (1)

O. Bernecker, IEEE J. Quantum Electron. QE-9, 897 (1973).
[CrossRef]

Bernecker, O.

O. Bernecker, IEEE J. Quantum Electron. QE-9, 897 (1973).
[CrossRef]

Eden, R. C.

R. C. Eden, AFAL-TR-72-343, 1973.

Falk, J.

J. Falk, IEEE J. Quantum Electron. QE-11, 21 (1975).
[CrossRef]

Kennedy, C. J.

C. J. Kennedy, IEEE J. Quantum Electron. QE-11, 793 (1975).
[CrossRef]

C. J. Kennedy, IEEE J. Quantum Electron. QE-11, 857 (1975).
[CrossRef]

IEEE J. Quantum Electron. (4)

J. Falk, IEEE J. Quantum Electron. QE-11, 21 (1975).
[CrossRef]

C. J. Kennedy, IEEE J. Quantum Electron. QE-11, 793 (1975).
[CrossRef]

C. J. Kennedy, IEEE J. Quantum Electron. QE-11, 857 (1975).
[CrossRef]

O. Bernecker, IEEE J. Quantum Electron. QE-9, 897 (1973).
[CrossRef]

Other (2)

R. C. Eden, AFAL-TR-72-343, 1973.

R. S. Reynolds, Ed., AFAL-TR-73-339, 1973.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (1)

Fig. 1
Fig. 1

Sampling oscilloscope trace of 1.06-μm output pulse recorded by an ultrahigh speed photodiode. Scan is 100 psec per cm.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

η = P 1 P 2 0 P 2 ( t ) d t 0 P 1 ( t ) d t = 0 F 2 ( t ) d t 0 F 1 ( t ) d t ;
η = 0 F 1 2 ( t ) d t 0 F 1 ( t ) d t .
η = j F j 2 / j F j ,
d η = j d F j η F j = j d F j ( 2 F j - η ) / Σ F j .
F 1 ( t ) = cos t - cos t ^ 1 - cos t ^ ,
η = t ^ / 2 - ¾ × sin 2 t ^ + t ^ cos 2 t ^ ( 1 - cos t ^ ) ( sin t ^ - t ^ cos t ^ ) ,

Metrics