Abstract

No abstract available.

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. Yeh, H. Z. Cummins, Appl. Phys. Lett. 4, 176 (1964).
    [CrossRef]
  2. R. M. Fristrom, A. R. Jones, M. J. R. Schwar, F. J. Weinberg, Faraday Symp. Chem. Soc. 7, 183 (1973).
    [CrossRef]
  3. W. M. Farmer, Appl. Opt. 11, 2603 (1972).
    [CrossRef] [PubMed]
  4. A. R. Jones, J. Phys. D 7, 1369 (1974).
    [CrossRef]
  5. D. M. Robinson, W. P. Chu, Appl. Opt. 14, 9 (1975).
    [CrossRef]
  6. N. S. Hong, A. R. Jones, J. Phys. D 9, 1839 (1976).
    [CrossRef]
  7. M. Kerker, The Scattering of Light (Academic, New York, 1969).

1976 (1)

N. S. Hong, A. R. Jones, J. Phys. D 9, 1839 (1976).
[CrossRef]

1975 (1)

D. M. Robinson, W. P. Chu, Appl. Opt. 14, 9 (1975).
[CrossRef]

1974 (1)

A. R. Jones, J. Phys. D 7, 1369 (1974).
[CrossRef]

1973 (1)

R. M. Fristrom, A. R. Jones, M. J. R. Schwar, F. J. Weinberg, Faraday Symp. Chem. Soc. 7, 183 (1973).
[CrossRef]

1972 (1)

1964 (1)

Y. Yeh, H. Z. Cummins, Appl. Phys. Lett. 4, 176 (1964).
[CrossRef]

Chu, W. P.

D. M. Robinson, W. P. Chu, Appl. Opt. 14, 9 (1975).
[CrossRef]

Cummins, H. Z.

Y. Yeh, H. Z. Cummins, Appl. Phys. Lett. 4, 176 (1964).
[CrossRef]

Farmer, W. M.

Fristrom, R. M.

R. M. Fristrom, A. R. Jones, M. J. R. Schwar, F. J. Weinberg, Faraday Symp. Chem. Soc. 7, 183 (1973).
[CrossRef]

Hong, N. S.

N. S. Hong, A. R. Jones, J. Phys. D 9, 1839 (1976).
[CrossRef]

Jones, A. R.

N. S. Hong, A. R. Jones, J. Phys. D 9, 1839 (1976).
[CrossRef]

A. R. Jones, J. Phys. D 7, 1369 (1974).
[CrossRef]

R. M. Fristrom, A. R. Jones, M. J. R. Schwar, F. J. Weinberg, Faraday Symp. Chem. Soc. 7, 183 (1973).
[CrossRef]

Kerker, M.

M. Kerker, The Scattering of Light (Academic, New York, 1969).

Robinson, D. M.

D. M. Robinson, W. P. Chu, Appl. Opt. 14, 9 (1975).
[CrossRef]

Schwar, M. J. R.

R. M. Fristrom, A. R. Jones, M. J. R. Schwar, F. J. Weinberg, Faraday Symp. Chem. Soc. 7, 183 (1973).
[CrossRef]

Weinberg, F. J.

R. M. Fristrom, A. R. Jones, M. J. R. Schwar, F. J. Weinberg, Faraday Symp. Chem. Soc. 7, 183 (1973).
[CrossRef]

Yeh, Y.

Y. Yeh, H. Z. Cummins, Appl. Phys. Lett. 4, 176 (1964).
[CrossRef]

Appl. Opt. (2)

W. M. Farmer, Appl. Opt. 11, 2603 (1972).
[CrossRef] [PubMed]

D. M. Robinson, W. P. Chu, Appl. Opt. 14, 9 (1975).
[CrossRef]

Appl. Phys. Lett. (1)

Y. Yeh, H. Z. Cummins, Appl. Phys. Lett. 4, 176 (1964).
[CrossRef]

Faraday Symp. Chem. Soc. (1)

R. M. Fristrom, A. R. Jones, M. J. R. Schwar, F. J. Weinberg, Faraday Symp. Chem. Soc. 7, 183 (1973).
[CrossRef]

J. Phys. D (2)

A. R. Jones, J. Phys. D 7, 1369 (1974).
[CrossRef]

N. S. Hong, A. R. Jones, J. Phys. D 9, 1839 (1976).
[CrossRef]

Other (1)

M. Kerker, The Scattering of Light (Academic, New York, 1969).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Coordinate system.

Fig. 2
Fig. 2

Scattered visibility vs aperture size as a function of refractive index. (I) D/λ = 2.06, λf = 6.5 μm, Df = 0.20; (a) Robinson and Chu, (b) n = 1.4, (c) n = 1.6. (II) D/λ = 9.56, λf = 6.5 μm, Df = 0.93; (1) n = 1.46, (2) n = 1.49, (3) n = 1.60, (4) 1.60 − i 0.10 (5) n = 2.79, (6) Robinson and Chu.

Fig. 3
Fig. 3

Scattered visibility vs aperture size as a function of particle size. λ/λf = 0.0974, λf = 6.5 μm (a) n = 1.4, D/λ = 1.80; (b) Robinson and Chu, D/λ = 2.06; (c) n = 1.4, D/λ = 2.40; (d) n = 1.6, D/λ = 7.02; (e) n = 1.6 − i 0.1, D/λ = 7.02; (f) n = 1.6, D/λ = 8.60; (g) n = 1.6 − i 0.1, D/λ = 8.60; (h) n = 1.6, D/λ = 9.56; (i) n = 1.6 − i 0.1, D/λ = 9.56; (j) n = 1.6, D/λ = 10.52; (k) n = 1.6 − i 0.1, D/λ = 10.52.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

V sca = ( P sca ) max - ( P sca ) min ( P sca ) max + ( P sca ) min ,
P sca = Δ θ Δ ϕ I sca ( n , D , λ f , θ , ϕ ) r 2 sin θ d ϕ d θ ,
I sca = E θ 2 + E ϕ 2 ,
( E θ E ϕ ) = ( α θ θ 1 α θ ϕ 1 α ϕ θ 1 α ϕ ϕ 1 ) ( E θ 1 E ϕ 1 ) + ( α θ θ 2 α θ ϕ 2 α ϕ θ 2 α ϕ ϕ 2 ) ( E θ 2 E ϕ 2 )
α θ θ j = α ϕ ϕ j = 1 sin θ j [ sin θ cos γ + ( - 1 ) j cos θ sin ϕ sin γ ] α ϕ θ j = - α θ ϕ j = ( - 1 ) j sin θ j cos ϕ sin γ
sin θ j cos θ j = sin θ cos ϕ sin θ j sin ϕ j = sin θ sin ϕ cos γ + ( - 1 ) j cos θ sin γ cos θ j = ( - 1 ) j - 1 sin θ sin ϕ sin γ + cos θ cos γ .
E θ j = - E o i k r exp ( - ikr ) · exp [ ( - 1 ) j - 1 ikY sin γ ] cos ϕ j S 2 ( θ j ) E ϕ j = E o i k r exp ( - ikr ) · exp [ ( - 1 ) j - 1 ikY sin γ ] sin ϕ j S 1 ( θ j ) ,

Metrics