Abstract

The use of multiple transmitter beams is shown to significantly increase the peak focal-plane irradiance that can be achieved in the presence of thermal blooming. Computer simulation studies of the beam propagation problem show over a factor of 2 increase in the irradiance of a single beam and a factor of 9 increase when three coherent beams are focused on the same target spot. Preliminary experimental results with three mutually noncoherent, nonoverlapping beams are in qualitative agreement with the computer simulation.

© 1976 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. P. Brown, J. E. Pearson, “Multidither COAT Compensation for Thermal Blooming and Turbulence: Experimental and Computer Simulations Results (U),” presented at First DoD Conference on High Energy Laser Technology, San Diego, Calif., October 1974; J. E. Pearson, “COAT Measurements and Analysis,” RADC-TR-75-101, May1975, available from NTIS or RADC.
  2. F. G. Gebhardt, D. C. Smith, IEEE J. Quantum Electron. QE-7, 63 (1971).
  3. E. H. Tahken, D. M. Cordroy, Appl. Opt. 13, 2753 (1974).
  4. L. C. Bradley, J. Herrman, Appl. Opt. 13, 331 (1974).
  5. W. B. Bridges, J. E. Pearson, Appl. Phys. Lett. 26, 539 (1975).
  6. J. E. Pearson, W. B. Bridges, S. Hansen, T. A. Nussmeier, M. E. Pedinoff, Appl. Opt. 15, 611, (1976).
  7. J. Wallace, I. Itzkam, J. Camm, J. Opt. Soc. Am. 64, 1123 (1974).
  8. J. E. Pearson, C. Yeh, W. P. Brown, to be published in J. Opt. Soc. Am.66, No. 11 (Nov.1976).
  9. D. B. Hall, C. Yeh, J. Appl. Phys. 44, 2271 (1973).
  10. R. L. Abrams, W. B. Bridges, IEEE J. Quantum Electron. QE-9, 940 (1973).
  11. This optimization could even be done automatically using techniques similar to those in Ref. 1, 4, and 6.
  12. W. P. Brown, unpublished.

1976

1975

W. B. Bridges, J. E. Pearson, Appl. Phys. Lett. 26, 539 (1975).

1974

1973

D. B. Hall, C. Yeh, J. Appl. Phys. 44, 2271 (1973).

R. L. Abrams, W. B. Bridges, IEEE J. Quantum Electron. QE-9, 940 (1973).

1971

F. G. Gebhardt, D. C. Smith, IEEE J. Quantum Electron. QE-7, 63 (1971).

Abrams, R. L.

R. L. Abrams, W. B. Bridges, IEEE J. Quantum Electron. QE-9, 940 (1973).

Bradley, L. C.

Bridges, W. B.

J. E. Pearson, W. B. Bridges, S. Hansen, T. A. Nussmeier, M. E. Pedinoff, Appl. Opt. 15, 611, (1976).

W. B. Bridges, J. E. Pearson, Appl. Phys. Lett. 26, 539 (1975).

R. L. Abrams, W. B. Bridges, IEEE J. Quantum Electron. QE-9, 940 (1973).

Brown, W. P.

J. E. Pearson, C. Yeh, W. P. Brown, to be published in J. Opt. Soc. Am.66, No. 11 (Nov.1976).

W. P. Brown, unpublished.

W. P. Brown, J. E. Pearson, “Multidither COAT Compensation for Thermal Blooming and Turbulence: Experimental and Computer Simulations Results (U),” presented at First DoD Conference on High Energy Laser Technology, San Diego, Calif., October 1974; J. E. Pearson, “COAT Measurements and Analysis,” RADC-TR-75-101, May1975, available from NTIS or RADC.

Camm, J.

Cordroy, D. M.

Gebhardt, F. G.

F. G. Gebhardt, D. C. Smith, IEEE J. Quantum Electron. QE-7, 63 (1971).

Hall, D. B.

D. B. Hall, C. Yeh, J. Appl. Phys. 44, 2271 (1973).

Hansen, S.

Herrman, J.

Itzkam, I.

Nussmeier, T. A.

Pearson, J. E.

J. E. Pearson, W. B. Bridges, S. Hansen, T. A. Nussmeier, M. E. Pedinoff, Appl. Opt. 15, 611, (1976).

W. B. Bridges, J. E. Pearson, Appl. Phys. Lett. 26, 539 (1975).

W. P. Brown, J. E. Pearson, “Multidither COAT Compensation for Thermal Blooming and Turbulence: Experimental and Computer Simulations Results (U),” presented at First DoD Conference on High Energy Laser Technology, San Diego, Calif., October 1974; J. E. Pearson, “COAT Measurements and Analysis,” RADC-TR-75-101, May1975, available from NTIS or RADC.

J. E. Pearson, C. Yeh, W. P. Brown, to be published in J. Opt. Soc. Am.66, No. 11 (Nov.1976).

Pedinoff, M. E.

Smith, D. C.

F. G. Gebhardt, D. C. Smith, IEEE J. Quantum Electron. QE-7, 63 (1971).

Tahken, E. H.

Wallace, J.

Yeh, C.

D. B. Hall, C. Yeh, J. Appl. Phys. 44, 2271 (1973).

J. E. Pearson, C. Yeh, W. P. Brown, to be published in J. Opt. Soc. Am.66, No. 11 (Nov.1976).

Appl. Opt.

Appl. Phys. Lett.

W. B. Bridges, J. E. Pearson, Appl. Phys. Lett. 26, 539 (1975).

IEEE J. Quantum Electron.

F. G. Gebhardt, D. C. Smith, IEEE J. Quantum Electron. QE-7, 63 (1971).

R. L. Abrams, W. B. Bridges, IEEE J. Quantum Electron. QE-9, 940 (1973).

J. Appl. Phys.

D. B. Hall, C. Yeh, J. Appl. Phys. 44, 2271 (1973).

J. Opt. Soc. Am.

Other

This optimization could even be done automatically using techniques similar to those in Ref. 1, 4, and 6.

W. P. Brown, unpublished.

W. P. Brown, J. E. Pearson, “Multidither COAT Compensation for Thermal Blooming and Turbulence: Experimental and Computer Simulations Results (U),” presented at First DoD Conference on High Energy Laser Technology, San Diego, Calif., October 1974; J. E. Pearson, “COAT Measurements and Analysis,” RADC-TR-75-101, May1975, available from NTIS or RADC.

J. E. Pearson, C. Yeh, W. P. Brown, to be published in J. Opt. Soc. Am.66, No. 11 (Nov.1976).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Effect of multiple Gaussian beams (noninteracting) on atmospheric index of refraction when atmosphere is absorbing; (b) schematic of how the index profile of the three beams in (a) create a guiding effect on the central beam.

Fig. 2
Fig. 2

Most general three-beam case. The separation STx can be obtained by physically separating the beams at the transmitter, and the separation STgt can be obtained by appropriately tilting beams 1 and 3. Beams 1, 2, and 3 may all be coherent beams or may have different wavelengths. The initial diameter of each transmitted beam is DT.

Fig. 3
Fig. 3

Computer simulation target irradiance profiles for thermal blooming: (a) thermally bloomed single beam; (b) central beam irradiance only, when two auxiliary beams of different wavelengths are used as in Figs. 1 and 2; (c) total target irradiance (all three beams) when the three beams are coherent.

Fig. 4
Fig. 4

Experimentally observed far-field irradiance patterns of the central beam in a three-beam array: (a) outside, guiding beams not present; (b) guiding beams turned on; the peak target irradiance increases by 1.8 dB.

Fig. 5
Fig. 5

Summary of computer simulation of three-beam propagation with blooming for 10.6-μm propagation in the atmosphere. A slew rate of 20 mrad/sec is also used: A—three-beam, coherent array; B—three noninteracting Gaussian beams overlapping at target; C—single Gaussian beam.

Metrics