Abstract

Dyes change their absorption curve when exposed to an electric field. The conditions under which this effect can be made large enough for application to light modulation are discussed. Theoretical expectations correspond with recorded curves of a test sample.

© 1976 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. R. Platt, J. Chem. Phys. 34, 862 (1961).
    [CrossRef]
  2. W. Liptay, in Excited States, Vol. 1 (Academic Press, New York, 1974), p. 129.
  3. H. Labhart, Adv. Chem. Phys. 13, 179 (1967).
    [CrossRef]
  4. J. Kumamoto, J. C. Powers, W. R. Heller, J. Chem. Phys. 36, 2893 (1962).
    [CrossRef]
  5. J. C. Powers, W. R. Heller, J. Kumamoto, W. E. Donath, J. Am. Chem. Soc. 86, 1004 (1964).
  6. K. Seibold, H. Navangul, H. Labhart, Chem. Phys. Lett. 3, 275 (1969).
  7. W. Liptay, G. Walz, W. Baumann, H. J. Schlosser, H. Deckers, N. Detzer, Z. Naturforsch. 26a, 2020 (1971).
  8. K. L. Chopra, Thin Film Phenomena (McGraw-Hill, New York, 1970).
  9. H. T. Mann, in Grundprobleme der Physik dünner Schichten, R. Niedermayer, H. Mayer, Eds. (Vandenhoek und Ruprecht, Göttingen, (1966).
  10. C. J. F. Boettcher, Theory of Electric Polarization (Elsevier, Amsterdam, 1952).
  11. H. Labhart, Experientia 22, 65 (1966).
  12. H. Kuhn, D. Möbius, H. Bücher, in Techniques of Chemistry, Vol. 1, Part 3B, A. Weissberger, B. W. Rossiter, Eds., (Wiley, New York, 1972), p. 577.
  13. E. W. Thulstrup, J. Michl, J. H. Eggers, J. Phys. Chem. 74, 3868, 3878 (1970).

1971 (1)

W. Liptay, G. Walz, W. Baumann, H. J. Schlosser, H. Deckers, N. Detzer, Z. Naturforsch. 26a, 2020 (1971).

1970 (1)

E. W. Thulstrup, J. Michl, J. H. Eggers, J. Phys. Chem. 74, 3868, 3878 (1970).

1969 (1)

K. Seibold, H. Navangul, H. Labhart, Chem. Phys. Lett. 3, 275 (1969).

1967 (1)

H. Labhart, Adv. Chem. Phys. 13, 179 (1967).
[CrossRef]

1966 (1)

H. Labhart, Experientia 22, 65 (1966).

1964 (1)

J. C. Powers, W. R. Heller, J. Kumamoto, W. E. Donath, J. Am. Chem. Soc. 86, 1004 (1964).

1962 (1)

J. Kumamoto, J. C. Powers, W. R. Heller, J. Chem. Phys. 36, 2893 (1962).
[CrossRef]

1961 (1)

J. R. Platt, J. Chem. Phys. 34, 862 (1961).
[CrossRef]

Baumann, W.

W. Liptay, G. Walz, W. Baumann, H. J. Schlosser, H. Deckers, N. Detzer, Z. Naturforsch. 26a, 2020 (1971).

Boettcher, C. J. F.

C. J. F. Boettcher, Theory of Electric Polarization (Elsevier, Amsterdam, 1952).

Bücher, H.

H. Kuhn, D. Möbius, H. Bücher, in Techniques of Chemistry, Vol. 1, Part 3B, A. Weissberger, B. W. Rossiter, Eds., (Wiley, New York, 1972), p. 577.

Chopra, K. L.

K. L. Chopra, Thin Film Phenomena (McGraw-Hill, New York, 1970).

Deckers, H.

W. Liptay, G. Walz, W. Baumann, H. J. Schlosser, H. Deckers, N. Detzer, Z. Naturforsch. 26a, 2020 (1971).

Detzer, N.

W. Liptay, G. Walz, W. Baumann, H. J. Schlosser, H. Deckers, N. Detzer, Z. Naturforsch. 26a, 2020 (1971).

Donath, W. E.

J. C. Powers, W. R. Heller, J. Kumamoto, W. E. Donath, J. Am. Chem. Soc. 86, 1004 (1964).

Eggers, J. H.

E. W. Thulstrup, J. Michl, J. H. Eggers, J. Phys. Chem. 74, 3868, 3878 (1970).

Heller, W. R.

J. C. Powers, W. R. Heller, J. Kumamoto, W. E. Donath, J. Am. Chem. Soc. 86, 1004 (1964).

J. Kumamoto, J. C. Powers, W. R. Heller, J. Chem. Phys. 36, 2893 (1962).
[CrossRef]

Kuhn, H.

H. Kuhn, D. Möbius, H. Bücher, in Techniques of Chemistry, Vol. 1, Part 3B, A. Weissberger, B. W. Rossiter, Eds., (Wiley, New York, 1972), p. 577.

Kumamoto, J.

J. C. Powers, W. R. Heller, J. Kumamoto, W. E. Donath, J. Am. Chem. Soc. 86, 1004 (1964).

J. Kumamoto, J. C. Powers, W. R. Heller, J. Chem. Phys. 36, 2893 (1962).
[CrossRef]

Labhart, H.

K. Seibold, H. Navangul, H. Labhart, Chem. Phys. Lett. 3, 275 (1969).

H. Labhart, Adv. Chem. Phys. 13, 179 (1967).
[CrossRef]

H. Labhart, Experientia 22, 65 (1966).

Liptay, W.

W. Liptay, G. Walz, W. Baumann, H. J. Schlosser, H. Deckers, N. Detzer, Z. Naturforsch. 26a, 2020 (1971).

W. Liptay, in Excited States, Vol. 1 (Academic Press, New York, 1974), p. 129.

Mann, H. T.

H. T. Mann, in Grundprobleme der Physik dünner Schichten, R. Niedermayer, H. Mayer, Eds. (Vandenhoek und Ruprecht, Göttingen, (1966).

Michl, J.

E. W. Thulstrup, J. Michl, J. H. Eggers, J. Phys. Chem. 74, 3868, 3878 (1970).

Möbius, D.

H. Kuhn, D. Möbius, H. Bücher, in Techniques of Chemistry, Vol. 1, Part 3B, A. Weissberger, B. W. Rossiter, Eds., (Wiley, New York, 1972), p. 577.

Navangul, H.

K. Seibold, H. Navangul, H. Labhart, Chem. Phys. Lett. 3, 275 (1969).

Platt, J. R.

J. R. Platt, J. Chem. Phys. 34, 862 (1961).
[CrossRef]

Powers, J. C.

J. C. Powers, W. R. Heller, J. Kumamoto, W. E. Donath, J. Am. Chem. Soc. 86, 1004 (1964).

J. Kumamoto, J. C. Powers, W. R. Heller, J. Chem. Phys. 36, 2893 (1962).
[CrossRef]

Schlosser, H. J.

W. Liptay, G. Walz, W. Baumann, H. J. Schlosser, H. Deckers, N. Detzer, Z. Naturforsch. 26a, 2020 (1971).

Seibold, K.

K. Seibold, H. Navangul, H. Labhart, Chem. Phys. Lett. 3, 275 (1969).

Thulstrup, E. W.

E. W. Thulstrup, J. Michl, J. H. Eggers, J. Phys. Chem. 74, 3868, 3878 (1970).

Walz, G.

W. Liptay, G. Walz, W. Baumann, H. J. Schlosser, H. Deckers, N. Detzer, Z. Naturforsch. 26a, 2020 (1971).

Adv. Chem. Phys. (1)

H. Labhart, Adv. Chem. Phys. 13, 179 (1967).
[CrossRef]

Chem. Phys. Lett. (1)

K. Seibold, H. Navangul, H. Labhart, Chem. Phys. Lett. 3, 275 (1969).

Experientia (1)

H. Labhart, Experientia 22, 65 (1966).

J. Am. Chem. Soc. (1)

J. C. Powers, W. R. Heller, J. Kumamoto, W. E. Donath, J. Am. Chem. Soc. 86, 1004 (1964).

J. Chem. Phys. (2)

J. Kumamoto, J. C. Powers, W. R. Heller, J. Chem. Phys. 36, 2893 (1962).
[CrossRef]

J. R. Platt, J. Chem. Phys. 34, 862 (1961).
[CrossRef]

J. Phys. Chem. (1)

E. W. Thulstrup, J. Michl, J. H. Eggers, J. Phys. Chem. 74, 3868, 3878 (1970).

Z. Naturforsch. (1)

W. Liptay, G. Walz, W. Baumann, H. J. Schlosser, H. Deckers, N. Detzer, Z. Naturforsch. 26a, 2020 (1971).

Other (5)

K. L. Chopra, Thin Film Phenomena (McGraw-Hill, New York, 1970).

H. T. Mann, in Grundprobleme der Physik dünner Schichten, R. Niedermayer, H. Mayer, Eds. (Vandenhoek und Ruprecht, Göttingen, (1966).

C. J. F. Boettcher, Theory of Electric Polarization (Elsevier, Amsterdam, 1952).

W. Liptay, in Excited States, Vol. 1 (Academic Press, New York, 1974), p. 129.

H. Kuhn, D. Möbius, H. Bücher, in Techniques of Chemistry, Vol. 1, Part 3B, A. Weissberger, B. W. Rossiter, Eds., (Wiley, New York, 1972), p. 577.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Numerical calculation of the influence of an electric field F on the absorption spectrum of stilbene derivative I. The molecules are assumed to be all parallel and oriented in such a way that the change in dipole moment (Δμ = 20 D) upon excitation is parallel to the electric field. The angle θe between the applied electric field and the unit vector e of the electric component of the measuring light is zero. Absorption data from a 5 × 10−5 M solution of the stilbene derivative I were used.

Fig. 2
Fig. 2

Numerical calculation of the influence of an electric field on the absorption spectrum of stilbene derivative I. Half of the molecules are assumed to have their dipole moment change parallel and half of them antiparallel to the electric field. θe = 0.

Fig. 3
Fig. 3

Numerical calculation of the influence of an electric field on the absorption spectrum of stilbene derivative I in the case of isotropic molecular orientation and θe = 0.

Fig. 4
Fig. 4

Numerical calculation of the absorption spectra of stilbene derivative I at a field of 11.6 × 106 V/cm and with isotropic orientation of the molecules in terms of the angle θe between the direction of the applied field and the unit vector of the electric component of the measuring light.

Fig. 5
Fig. 5

Experimental curves from a sample of 4,4-dimethylamino-4′-nitrostilbene dye. Film of 4.3 × 103-Å thickness between transparent aluminum electrodes. Reference: transparent aluminum layer on quartz. Angle between sample plane and polarized measuring light beam: 100. Spectrometer: Bausch & Lomb 505, Numbers on curves correspond to the sequence of recording. The baseline (- - -) has been constructed by deducing the optical density of an evaporated film of the same thickness on quartz glass without aluminum electrodes from curve 1.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

Δ ν ¯ = 1 h c ( - Δ μ · F - 1 2 F · Δ α F ) ,
0 ( ν ¯ ) = 3 ( m e ) 2 ( ν ¯ ) ,
F P ( ν ¯ ) = 3 ( m e ) 2 ( ν ¯ - Δ ν ¯ )
F P ( ν ¯ ) = 3 ( m e ) 2 ( ν ¯ + Δ μ F h c ) .
F A P ( ν ¯ ) = 3 2 ( m e ) 2 [ ( ν ¯ + Δ μ F h c ) + ( ν ¯ - Δ μ F h c ) ] ,
F R ( v ¯ ) = 3 4 π ( ν + Δ μ F h c ) ( m e ) 2 d σ ,
F R ( ν ¯ ) = 3 4 [ sin 2 θ e θ = 0 π ( ν ¯ + Δ μ F h c cos θ ) sin θ d θ + ( 3 cos 2 θ e - 1 ) θ = 0 π ( ν ¯ + Δ μ F h c cos θ ) cos 2 θ sin θ d θ ] .
F = D + 2 3 F a ,

Metrics