Abstract

Two types of multilayer interference filter are required for temperature sounding the earth’s atmosphere. In relation to the 668-cm−1ν2 band of CO2 these are narrowband (4 cm−1 wide for the Q branch, 10 cm−1 for the R branch) or isolation (~60 cm−1 wide for the complete center of the band). Difficulty in manufacturing the filters for nimbus-SCR and -PMR spaceflight has indicated a need for improvement in the monitoring and control of the deposition of layers, and the paper describes a realization of this. The consequent effect on filter performance (utilizing a particular combination of layer materials) is described.

© 1976 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. T. Houghton, S. D. Smith, Proc. R. Soc. London Ser. A: 320, 23 (1970).
    [CrossRef]
  2. S. D. Smith, C. R. Pidgeon, Mem. Soc. R. Sci. Liege 9, 336 (1964).
  3. G. Peckham et al., in Electromagnetic Sensing of the Earth from Satellites, R. Zirkind, Ed. (Polytechnic Press, Brooklyn, 1967).
  4. J. T. Houghton, F. W. Taylor, Rep. Prog. Phys. London 36, 827 (1973).
    [CrossRef]
  5. J. T. Houghton et al., “Proposals of SAMS for the Nimbus-G satellite” (1972, 1973) (Department of Atmospheric Physics, University of Oxford), otherwise unpublished.
  6. S. D. Smith, J. S. Seeley, “Multilayer Interference Filters for the Region 0.8 to 100 microns,” USAF contract 61(052)-833 (1968), Final Scientific Report.
  7. P. G. Abel et al., Proc. R. Soc. London Ser. A: 320, 35 (1970).
    [CrossRef]
  8. P. Ellis et al., Proc. R. Soc. London Ser. A: 334, 149 (1973).
    [CrossRef]
  9. S. D. Smith et al., in Infrared Detection Techniques for Space Research, V. Manno, J. Ring, Eds. (D. Reidel, Dordrecht, Holland, 1972).
  10. J. G. N. Braithwaite, W. D. Lawson, U.K. Patent849,341, 1960.
  11. C. S. Evans, J. S. Seeley, J. de Phys (Paris) C4-29, 37 (1968).
  12. Monitored = measured in reflection during deposition, spectrally resolved for deduction of optical thickness.
  13. Technicolour Motion Picture Corp.: British Patent731,865 (1955).
  14. To be published in Opt. Acta231976.
  15. For compensation of Te lost from PbTe during evaporation and again during deposition; solves the problem of transparency at long wavelengths.16
  16. J. S. Seeley, C. S. Evans, R. Hunneman, unpublished contribution to the 5th International Vacuum Congress [abstract in J. Vac. Sci. Tech. 9, No. 1 (1972).]
  17. C. S. Evans, R. Hunneman, J. S. Seeley, J. Phys. D. 9, 321 (1976).
    [CrossRef]
  18. S. D. Smith, G. Peckham, “Specification of optical components for NIMBUS-4 and 5 SCR (1967, 1969)” (Department of Physics, Heriot-Watt University) (formerly of Reading University), otherwise unpublished.
  19. S. D. Smith, J. Opt. Soc. Am. 48, 43 (1958).
    [CrossRef]
  20. J. S. Seeley, Proc. Phy. Soc. London 78, 998 (1961).
    [CrossRef]
  21. The empirical deduction relating to this is that excess dwell time is best avoided for the filter substrates when depositing ZnS, such dwell time being apparently on otherwise source of greater inaccuracy than are fractions.
  22. The empirical deduction relating to this is that inner vs outer identity may take precedence over a complete in situ record when unquantifiable effects are present in the particular case of DHW symmetry.
  23. Lowpass = low (wavenumber) pass, highpass = high (wavenumber) pass.
  24. J. S. Seeley, H. M. Liddell, T. C. Chen, Opt. Acta 20, 641 (1973).
    [CrossRef]
  25. C. S. Evans, R. Hunneman, J. S. Seeley, J. Phys. D. 9, 309 (1976).
    [CrossRef]
  26. Lowpass photoconductive absorption above 2650 cm−1 in PbTe; highpass reststrahlen lattice vibrational absorption variously in the II–VI compounds, being located at 310 cm−1 in the example of ZnS.
  27. H. Roscoe et al., “Specification of optical components for balloon flight PMR etc.” (1974, 1975) (Department of Atmospheric Physics, University of Oxford) otherwise unpublished.
  28. K. H. Davies, J. T. Houghton, G. D. Peskett, “Specification of optical components for NIMBUS-6 PMR” (1972) (Department of Atmospheric Physics, University of Oxford), otherwise unpublished.

1976 (2)

C. S. Evans, R. Hunneman, J. S. Seeley, J. Phys. D. 9, 321 (1976).
[CrossRef]

C. S. Evans, R. Hunneman, J. S. Seeley, J. Phys. D. 9, 309 (1976).
[CrossRef]

1973 (3)

J. S. Seeley, H. M. Liddell, T. C. Chen, Opt. Acta 20, 641 (1973).
[CrossRef]

P. Ellis et al., Proc. R. Soc. London Ser. A: 334, 149 (1973).
[CrossRef]

J. T. Houghton, F. W. Taylor, Rep. Prog. Phys. London 36, 827 (1973).
[CrossRef]

1970 (2)

P. G. Abel et al., Proc. R. Soc. London Ser. A: 320, 35 (1970).
[CrossRef]

J. T. Houghton, S. D. Smith, Proc. R. Soc. London Ser. A: 320, 23 (1970).
[CrossRef]

1968 (1)

C. S. Evans, J. S. Seeley, J. de Phys (Paris) C4-29, 37 (1968).

1964 (1)

S. D. Smith, C. R. Pidgeon, Mem. Soc. R. Sci. Liege 9, 336 (1964).

1961 (1)

J. S. Seeley, Proc. Phy. Soc. London 78, 998 (1961).
[CrossRef]

1958 (1)

Abel, P. G.

P. G. Abel et al., Proc. R. Soc. London Ser. A: 320, 35 (1970).
[CrossRef]

Braithwaite, J. G. N.

J. G. N. Braithwaite, W. D. Lawson, U.K. Patent849,341, 1960.

Chen, T. C.

J. S. Seeley, H. M. Liddell, T. C. Chen, Opt. Acta 20, 641 (1973).
[CrossRef]

Davies, K. H.

K. H. Davies, J. T. Houghton, G. D. Peskett, “Specification of optical components for NIMBUS-6 PMR” (1972) (Department of Atmospheric Physics, University of Oxford), otherwise unpublished.

Ellis, P.

P. Ellis et al., Proc. R. Soc. London Ser. A: 334, 149 (1973).
[CrossRef]

Evans, C. S.

C. S. Evans, R. Hunneman, J. S. Seeley, J. Phys. D. 9, 309 (1976).
[CrossRef]

C. S. Evans, R. Hunneman, J. S. Seeley, J. Phys. D. 9, 321 (1976).
[CrossRef]

C. S. Evans, J. S. Seeley, J. de Phys (Paris) C4-29, 37 (1968).

J. S. Seeley, C. S. Evans, R. Hunneman, unpublished contribution to the 5th International Vacuum Congress [abstract in J. Vac. Sci. Tech. 9, No. 1 (1972).]

Houghton, J. T.

J. T. Houghton, F. W. Taylor, Rep. Prog. Phys. London 36, 827 (1973).
[CrossRef]

J. T. Houghton, S. D. Smith, Proc. R. Soc. London Ser. A: 320, 23 (1970).
[CrossRef]

J. T. Houghton et al., “Proposals of SAMS for the Nimbus-G satellite” (1972, 1973) (Department of Atmospheric Physics, University of Oxford), otherwise unpublished.

K. H. Davies, J. T. Houghton, G. D. Peskett, “Specification of optical components for NIMBUS-6 PMR” (1972) (Department of Atmospheric Physics, University of Oxford), otherwise unpublished.

Hunneman, R.

C. S. Evans, R. Hunneman, J. S. Seeley, J. Phys. D. 9, 321 (1976).
[CrossRef]

C. S. Evans, R. Hunneman, J. S. Seeley, J. Phys. D. 9, 309 (1976).
[CrossRef]

J. S. Seeley, C. S. Evans, R. Hunneman, unpublished contribution to the 5th International Vacuum Congress [abstract in J. Vac. Sci. Tech. 9, No. 1 (1972).]

Lawson, W. D.

J. G. N. Braithwaite, W. D. Lawson, U.K. Patent849,341, 1960.

Liddell, H. M.

J. S. Seeley, H. M. Liddell, T. C. Chen, Opt. Acta 20, 641 (1973).
[CrossRef]

Peckham, G.

S. D. Smith, G. Peckham, “Specification of optical components for NIMBUS-4 and 5 SCR (1967, 1969)” (Department of Physics, Heriot-Watt University) (formerly of Reading University), otherwise unpublished.

G. Peckham et al., in Electromagnetic Sensing of the Earth from Satellites, R. Zirkind, Ed. (Polytechnic Press, Brooklyn, 1967).

Peskett, G. D.

K. H. Davies, J. T. Houghton, G. D. Peskett, “Specification of optical components for NIMBUS-6 PMR” (1972) (Department of Atmospheric Physics, University of Oxford), otherwise unpublished.

Pidgeon, C. R.

S. D. Smith, C. R. Pidgeon, Mem. Soc. R. Sci. Liege 9, 336 (1964).

Roscoe, H.

H. Roscoe et al., “Specification of optical components for balloon flight PMR etc.” (1974, 1975) (Department of Atmospheric Physics, University of Oxford) otherwise unpublished.

Seeley, J. S.

C. S. Evans, R. Hunneman, J. S. Seeley, J. Phys. D. 9, 321 (1976).
[CrossRef]

C. S. Evans, R. Hunneman, J. S. Seeley, J. Phys. D. 9, 309 (1976).
[CrossRef]

J. S. Seeley, H. M. Liddell, T. C. Chen, Opt. Acta 20, 641 (1973).
[CrossRef]

C. S. Evans, J. S. Seeley, J. de Phys (Paris) C4-29, 37 (1968).

J. S. Seeley, Proc. Phy. Soc. London 78, 998 (1961).
[CrossRef]

S. D. Smith, J. S. Seeley, “Multilayer Interference Filters for the Region 0.8 to 100 microns,” USAF contract 61(052)-833 (1968), Final Scientific Report.

J. S. Seeley, C. S. Evans, R. Hunneman, unpublished contribution to the 5th International Vacuum Congress [abstract in J. Vac. Sci. Tech. 9, No. 1 (1972).]

Smith, S. D.

J. T. Houghton, S. D. Smith, Proc. R. Soc. London Ser. A: 320, 23 (1970).
[CrossRef]

S. D. Smith, C. R. Pidgeon, Mem. Soc. R. Sci. Liege 9, 336 (1964).

S. D. Smith, J. Opt. Soc. Am. 48, 43 (1958).
[CrossRef]

S. D. Smith et al., in Infrared Detection Techniques for Space Research, V. Manno, J. Ring, Eds. (D. Reidel, Dordrecht, Holland, 1972).

S. D. Smith, J. S. Seeley, “Multilayer Interference Filters for the Region 0.8 to 100 microns,” USAF contract 61(052)-833 (1968), Final Scientific Report.

S. D. Smith, G. Peckham, “Specification of optical components for NIMBUS-4 and 5 SCR (1967, 1969)” (Department of Physics, Heriot-Watt University) (formerly of Reading University), otherwise unpublished.

Taylor, F. W.

J. T. Houghton, F. W. Taylor, Rep. Prog. Phys. London 36, 827 (1973).
[CrossRef]

J. de Phys (Paris) (1)

C. S. Evans, J. S. Seeley, J. de Phys (Paris) C4-29, 37 (1968).

J. Opt. Soc. Am. (1)

J. Phys. D. (2)

C. S. Evans, R. Hunneman, J. S. Seeley, J. Phys. D. 9, 321 (1976).
[CrossRef]

C. S. Evans, R. Hunneman, J. S. Seeley, J. Phys. D. 9, 309 (1976).
[CrossRef]

Mem. Soc. R. Sci. Liege (1)

S. D. Smith, C. R. Pidgeon, Mem. Soc. R. Sci. Liege 9, 336 (1964).

Opt. Acta (1)

J. S. Seeley, H. M. Liddell, T. C. Chen, Opt. Acta 20, 641 (1973).
[CrossRef]

Proc. Phy. Soc. London (1)

J. S. Seeley, Proc. Phy. Soc. London 78, 998 (1961).
[CrossRef]

Proc. R. Soc. London Ser. A (3)

P. G. Abel et al., Proc. R. Soc. London Ser. A: 320, 35 (1970).
[CrossRef]

P. Ellis et al., Proc. R. Soc. London Ser. A: 334, 149 (1973).
[CrossRef]

J. T. Houghton, S. D. Smith, Proc. R. Soc. London Ser. A: 320, 23 (1970).
[CrossRef]

Rep. Prog. Phys. London (1)

J. T. Houghton, F. W. Taylor, Rep. Prog. Phys. London 36, 827 (1973).
[CrossRef]

Other (17)

J. T. Houghton et al., “Proposals of SAMS for the Nimbus-G satellite” (1972, 1973) (Department of Atmospheric Physics, University of Oxford), otherwise unpublished.

S. D. Smith, J. S. Seeley, “Multilayer Interference Filters for the Region 0.8 to 100 microns,” USAF contract 61(052)-833 (1968), Final Scientific Report.

G. Peckham et al., in Electromagnetic Sensing of the Earth from Satellites, R. Zirkind, Ed. (Polytechnic Press, Brooklyn, 1967).

S. D. Smith et al., in Infrared Detection Techniques for Space Research, V. Manno, J. Ring, Eds. (D. Reidel, Dordrecht, Holland, 1972).

J. G. N. Braithwaite, W. D. Lawson, U.K. Patent849,341, 1960.

The empirical deduction relating to this is that excess dwell time is best avoided for the filter substrates when depositing ZnS, such dwell time being apparently on otherwise source of greater inaccuracy than are fractions.

The empirical deduction relating to this is that inner vs outer identity may take precedence over a complete in situ record when unquantifiable effects are present in the particular case of DHW symmetry.

Lowpass = low (wavenumber) pass, highpass = high (wavenumber) pass.

Monitored = measured in reflection during deposition, spectrally resolved for deduction of optical thickness.

Technicolour Motion Picture Corp.: British Patent731,865 (1955).

To be published in Opt. Acta231976.

For compensation of Te lost from PbTe during evaporation and again during deposition; solves the problem of transparency at long wavelengths.16

J. S. Seeley, C. S. Evans, R. Hunneman, unpublished contribution to the 5th International Vacuum Congress [abstract in J. Vac. Sci. Tech. 9, No. 1 (1972).]

S. D. Smith, G. Peckham, “Specification of optical components for NIMBUS-4 and 5 SCR (1967, 1969)” (Department of Physics, Heriot-Watt University) (formerly of Reading University), otherwise unpublished.

Lowpass photoconductive absorption above 2650 cm−1 in PbTe; highpass reststrahlen lattice vibrational absorption variously in the II–VI compounds, being located at 310 cm−1 in the example of ZnS.

H. Roscoe et al., “Specification of optical components for balloon flight PMR etc.” (1974, 1975) (Department of Atmospheric Physics, University of Oxford) otherwise unpublished.

K. H. Davies, J. T. Houghton, G. D. Peskett, “Specification of optical components for NIMBUS-6 PMR” (1972) (Department of Atmospheric Physics, University of Oxford), otherwise unpublished.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1

Evaporation plant and fittings: illustrative of monitor/shutter arrangements, relative rotation for uniformity, admission of O2.

Fig. 2
Fig. 2

Evaporation plant and fittings: illustrative of thermal control/substrate mounting.

Fig. 3
Fig. 3

Recorded temperature and deposition-thickness signal (facsimile). Anotation of principal events including changes of electronic amplification: (A) ZnS being vaporized, consolidates partial-growth permitted for the previous PbTe layer, freshly deposited. Both shutters open. Electronic amplification = 10 mV FSD. (B) ZnS nucleates and begins to deposit (typical behavior of a layer midway through a filter deposition). (C) Shutter, monitor-only, closes to cut off the filter(s) layer, thereby generating a fractional thickness. (D) Electronic amplification = 2mV FSD. (E) Shutter, all substrates, closes at two divisions overshoot on high amplification. (F) Both shutters open for dwell period of ZnS. (G) PbTe being vaporized. Electronic amplification = 20mV FSD. (H) PbTe nucleates and begins to deposit [typical behavior of the layer next after typical (B)]. (I) Shutter, monitor-only, closes, same as (C). (J) Electronic amplification = 2mV FSD. (K) Shutter, all substrates, closes, same as (E). (L) Both shutters open for PbTe to grow partially (N.B. a best choice for the interruption of deposition to accommodate this phenomenon remains unestablished, but completion is known to require about 25 min.) Both shutters open. Events recommence as at (A) etc.

Fig. 4
Fig. 4

FP component for CO2Q branch. Measured profile with entered specification. median = 668 ± 0.5 cm−1; HBW = 3.5, + 1.0, −0.5 cm−1; 1% BW as shown; transmission not less than 40% at peak. The rejection width is 880–460 cm−1: On Ge substrate, rear surface antireflected. This component has flown in nimbus-5 SCR and was supplied to VTPR and the tiros-BSU design study.

Fig. 5
Fig. 5

DHW component for CO2R branch. Measured profile with entered specification: median = 695 ± 2 cm−1, and HBW = 10 ± 2.5 cm−1. The rejection width is in the same proportion to Fig. 4. On Ge substrate, rear surface antireflected. This profile and accuracy have been reproduced at 708 cm−1, 747 cm−1, 835 cm−1, 860 cm−1, and 935 cm−1. Components of the type have flown in nimbus-5 SCR, in balloons, and (variously) in VTPR. (The monitoring procedure for 860 cm−1 and 935 cm−1 was third order, for which the λ0 coefficient of variation was within the HBW: λ0 found to be 2.95 λ.)

Fig. 6
Fig. 6

Narrow two-cavity component for NO2, 9-cm−1 HBW. Measured profile with entered specification: median = 1597 ± 4 cm−1, and 10% BW as shown. On Ge substrate, rear surface antireflected. The particular design has a vanishing temperature-shift coefficient due to fortuitous use of LLLL spacer layers. Note: This profile is of the same absolute narrowness as Fig. 4, but if manufactured for that wavelength it would be more square and should retain the temperature nondependence.

Fig. 7
Fig. 7

Filter for total band of NO to a double-peak profile. Measured profile with entered specification: + signifying line pairs of 1.3-cm−1 separation for the P and R (but not Q) branches in the fundamental vibration rotation band.

Fig. 8
Fig. 8

KRS-6 antireflected for 668 cm−1. Transmits better than 95% of the CO2ν2 band.

Fig. 9
Fig. 9

Lowpass/highpass blocking component for CO2R branch. Measured profile showing 140-cm−1 HBW, transmission not less than 80% for channels in Fig. 5. Blocking range is 6.4–26.5 μm.

Fig. 10
Fig. 10

Lowpass/highpass blocking component for CO2Q branch. This component provides complete blocking, on one substrate, for the FP component (Fig. 4). Transmission of this component and the FP component, together, exceeds 30%.

Fig. 11
Fig. 11

Precision lowpass/highpass filter for the total ν2 band of CO2 (nimbus-6 PMR). Measured profile (expanded scale including wavenumber markers) with entered specification28: ½ height wn = 698 ± 10 cm−1, 638 ± 10 cm−1; 1% wn ≯740 cm−1 ≮ 610 cm−1; transmission not less than 50% mean over the HBW; blocking range x ray to 28 μm.

Fig. 12
Fig. 12

Perkin-Elmer Flowchart measured profile for Fig. 11 (filter comprises a one 1-mm thick Ge substrate carrying multilayers designated L Aux: LP/Ge/HP: Aux L). Note: The leak at 360 cm−1 is eliminated either by a supplementary highpass placed elsewhere in the PMR path or by distributing the auxiliary multilayers on a second Ge substrate. But transmission for one, two, 1-mm Ge substrates perfectly antireflected at 668 cm−1 is not then better than

Fig. 13
Fig. 13

Extended Tschebysheff highpass filter. The design layer thicknesses of this filter were numerically refined for the purpose of extending the passband.

Fig. 14
Fig. 14

Longwave blocking of KRS-6 (2 mm). Transmission is 0% from 250 cm−1 to 32 cm−1, inband transmission as in Fig. 8.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

reflectance at particular thickness less the minimum reflectance , divided by the total swing of reflectance = 1 / [ 1 + C - 1 cot 2 ( ½ π q ) ] ,
Layers : L Aux / Ge / L H L H L HH L H L H sequenced ( deposition ) . . . 4 , 5 , 6 , 7 , . . .
δ q Zns - 3 δ q PbTe ,
Layers : L Aux / Ge / L H L HH L H L H a sequenced ( deposiition ) . 2 , 3 , 4 , 5 , . . . L ¯ H ¯ L ¯ HH ¯ L ¯ H ¯ a . 10 , 11 , 12 , 13 , .
- 1 3 · δ q ZnS + δ q PbTe

Metrics