Abstract

The obsolete Lummer-Gehrcke interferometer is reexamined, and it is shown how, with a few simple modifications, this instrument can be used to study the optical properties of thin, solid, dielectric films. In particular, the thickness, the wavelength dispersion, and the absorption spectrum of the film can all be obtained simultaneously. In the case of anisotropic films, the polarization dependence of these parameters is obtained very conveniently. The modified interferometer allows continuous monitoring of the above parameters in situ during growth.

© 1976 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. O. Lummer, Verh. Dtsch. Phys. Ges. 3, 85 (1901).
  2. O. Lummer, E. Gehrcke, Ann. Phys. 10, (3) (1903), 457.
    [CrossRef]
  3. C. Candler, Modern Interferometers (Hilger and Watts, Ltd, London, 1951), pp. 321–344.
  4. M. Born, E. Wolf, Principles of Optics (Pergamon, London, 1975).
  5. N. J. Harrick, Internal Reflection Spectroscopy (Interscience, New York, 1967).
  6. J. M. Zimam, Principles of the Theory of Solids (Cambridge U. P., London, 1964), p. 229.
  7. H. E. Bennett, J. M. Bennett, Phys. Thin Films 4, 1 (1967).
  8. Cement used was UV-71 obtained from Summers Laboratories, Fort Washington, Pa.

1967

H. E. Bennett, J. M. Bennett, Phys. Thin Films 4, 1 (1967).

1903

O. Lummer, E. Gehrcke, Ann. Phys. 10, (3) (1903), 457.
[CrossRef]

1901

O. Lummer, Verh. Dtsch. Phys. Ges. 3, 85 (1901).

Bennett, H. E.

H. E. Bennett, J. M. Bennett, Phys. Thin Films 4, 1 (1967).

Bennett, J. M.

H. E. Bennett, J. M. Bennett, Phys. Thin Films 4, 1 (1967).

Born, M.

M. Born, E. Wolf, Principles of Optics (Pergamon, London, 1975).

Candler, C.

C. Candler, Modern Interferometers (Hilger and Watts, Ltd, London, 1951), pp. 321–344.

Gehrcke, E.

O. Lummer, E. Gehrcke, Ann. Phys. 10, (3) (1903), 457.
[CrossRef]

Harrick, N. J.

N. J. Harrick, Internal Reflection Spectroscopy (Interscience, New York, 1967).

Lummer, O.

O. Lummer, E. Gehrcke, Ann. Phys. 10, (3) (1903), 457.
[CrossRef]

O. Lummer, Verh. Dtsch. Phys. Ges. 3, 85 (1901).

Wolf, E.

M. Born, E. Wolf, Principles of Optics (Pergamon, London, 1975).

Zimam, J. M.

J. M. Zimam, Principles of the Theory of Solids (Cambridge U. P., London, 1964), p. 229.

Ann. Phys.

O. Lummer, E. Gehrcke, Ann. Phys. 10, (3) (1903), 457.
[CrossRef]

Phys. Thin Films

H. E. Bennett, J. M. Bennett, Phys. Thin Films 4, 1 (1967).

Verh. Dtsch. Phys. Ges.

O. Lummer, Verh. Dtsch. Phys. Ges. 3, 85 (1901).

Other

Cement used was UV-71 obtained from Summers Laboratories, Fort Washington, Pa.

C. Candler, Modern Interferometers (Hilger and Watts, Ltd, London, 1951), pp. 321–344.

M. Born, E. Wolf, Principles of Optics (Pergamon, London, 1975).

N. J. Harrick, Internal Reflection Spectroscopy (Interscience, New York, 1967).

J. M. Zimam, Principles of the Theory of Solids (Cambridge U. P., London, 1964), p. 229.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

The modified Lummer-Gehrcke interferometer.

Fig. 2
Fig. 2

(a) Ray diagram for a clean plate; (b) ray diagram for a plate covered with a thin dielectric film.

Fig. 3
Fig. 3

Lummer-Gehrcke interference patterns recorded before and during the deposition of a thin film of solid oxygen. Note that each order not only shifts to longer wavelengths but splits into two components.

Fig. 4
Fig. 4

The internal reflection spectra of a thin film of solid oxygen for light polarized parallel and perpendicular to the plane of incidence.

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

( m 1 λ ) = 2 t 1 ( η 1 2 - A 2 ) 1 / 2 ,
( Δ λ ) S R = λ 2 ( η 1 2 - A 2 ) 1 / 2 2 t 1 ( η 1 G 1 - A 2 ) ,
d θ 3 d λ = 2 η 1 λ [ ( d η 1 ) / ( d λ ) ] - 2 ( η 1 2 - sin 2 θ 3 ) λ sin 2 θ 3 .
( 2 t 1 ) 2 = ( m 1 λ ) b 2 - ( m 1 λ ) a 2 A 2 - B 2
η 1 2 = ( m 1 λ ) a 2 ( 2 t 1 ) 2 + A 2 .
( m λ ) a = 2 t 1 ( η 1 2 - A 2 ) 1 / 2 + 2 t 2 ( η 2 2 - A 2 ) 1 / 2
Δ ( m λ ) a = [ ( m λ ) a - ( m 1 λ ) a ] = 2 t 2 ( η 2 2 - A 2 ) 1 / 2 .
( 2 t 2 ) 2 = [ Δ ( m λ ) b ] 2 - [ Δ ( m λ ) a ] 2 A 2 - B 2
η 2 2 = [ Δ ( m λ ) a ] 2 ( 2 t 2 ) 2 + A 2 .
1 η 2 e 2 = cos 2 θ 2 e η 20 2 + sin 2 θ 2 e η 2 E 2 ,
η 2 E 2 = η 20 2 ( 1 + η 20 2 - η 2 e g 2 ) - 1 .
Δ ( m λ ) g 2 t 2 ( - 1 ) 1 / 2 ,
α ( λ ) 3 [ Δ ( m λ ) g ] 2 4 π n { [ Δ ( m λ ) g ] 2 + 12 t 2 } .
Δ η 2 L λ t 2 ( η 2 2 - A 2 ) 1 / 2 2 η 2 F .
Δ t 2 L λ 2 F ( η 2 2 - A 2 ) 1 / 2 .

Metrics