Abstract

A new type of lateral shear holographic interferometer is described. It can be used to test lenses as well as spherical and aspherical surfaces. A null pattern with straight fringes can be obtained for an aspherical surface, provided one has a prototype that can be used for making the hologram.

© 1976 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. Y. Bates, Proc. Phys. Soc. London, Sect. B 59, 940 (1947).
    [CrossRef]
  2. D. S. Brown, Proc. Phys. Soc. London, Sect. B 67, 232 (1954).
    [CrossRef]
  3. M. V. R. K. Murty, Appl. Opt. 3, 531 (1964).
    [CrossRef]
  4. J. C. Wyant, Appl. Opt. 12, 2057 (1973).
    [CrossRef] [PubMed]

1973 (1)

1964 (1)

1954 (1)

D. S. Brown, Proc. Phys. Soc. London, Sect. B 67, 232 (1954).
[CrossRef]

1947 (1)

W. Y. Bates, Proc. Phys. Soc. London, Sect. B 59, 940 (1947).
[CrossRef]

Bates, W. Y.

W. Y. Bates, Proc. Phys. Soc. London, Sect. B 59, 940 (1947).
[CrossRef]

Brown, D. S.

D. S. Brown, Proc. Phys. Soc. London, Sect. B 67, 232 (1954).
[CrossRef]

Murty, M. V. R. K.

Wyant, J. C.

Appl. Opt. (2)

Proc. Phys. Soc. London, Sect. B (2)

W. Y. Bates, Proc. Phys. Soc. London, Sect. B 59, 940 (1947).
[CrossRef]

D. S. Brown, Proc. Phys. Soc. London, Sect. B 67, 232 (1954).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Setup for making the hologram.

Fig. 2
Fig. 2

Hologram reconstruction.

Fig. 3
Fig. 3

Observed interferometer patterns.

Fig. 4
Fig. 4

Geometry of interferometer beams.

Fig. 5
Fig. 5

Shear and tilt of sheared wavefronts.

Fig. 6
Fig. 6

Null pattern for aspherical surface in order +1.

Fig. 7
Fig. 7

Nonnull pattern for aspherical surface in order −1.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

sin ( σ / 2 ) = sin θ sin ( α / 2 ) .
S = 2 ( R - L ) sin ( σ / 2 ) ,
sin ( τ / 2 ) = ( L / R ) sin ( σ / 2 ) .
S = 2 R [ ( R / L ) - 1 ] sin ( τ / 2 ) .

Metrics