Abstract

A new, simple scheme to tune a double-pass, superradiant dye laser is reported. A planar cell with a thickness below 100 μm filled with a highly concentrated (4–5 × 10−3-M/liter) solution of Rhodamine 6G in ethanol is used. An unsaturated gain value of 1.7 cm−1 has been measured with flashlamp pumping, and the amplifier has been found to operate at a well saturated regime. Smooth laser linewidths ranging from broadband, gain narrowed values of 10 nm to narrowband values of 8 GHz have been achieved by using appropriate frequency dispersive feedback elements and suitable cell thickness. A 5-GHz output has been observed with a 25-μm gap cell. The absence of a resonant cavity avoids modal structure and ensures improved frequency and intensity stability. The reported configuration should be scalable up as far as output energy is concerned. Simultaneous two-wavelength operation is possible. Pumping with a frequency-doubled Nd-laser should allow a further reduction of the usable cell thickness with narrower output bandwidths.

© 1976 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Burlamacchi, R. Pratesi, R. Salimbeni, Opt. Commun. 11, 109 (1974).
    [CrossRef]
  2. P. Burlamacchi, R. Pratesi, R. Salimbeni, Appl. Opt. 14, 1311 (1975).
    [CrossRef] [PubMed]
  3. P. Burlamacchi, R. Pratesi, Appl. Phys. Lett. 28, 124 (1976).
    [CrossRef]
  4. P. Burlamacchi, R. Salimbeni, Opt. Commun. 17, 6 (1976).
    [CrossRef]
  5. P. Burlamacchi, R. Pratesi, R. Coisson, unpublished.
  6. H. Walther, Ed., Laser Spectroscopy (Springer, New York, 1976).
  7. P. Burlamacchi, R. Pratesi, L. Ronchi, Appl. Opt. 14, 79 (1975).
    [CrossRef] [PubMed]
  8. T. W. Hänsch, Appl. Opt. 11, 895 (1972).
    [CrossRef] [PubMed]
  9. M. H. Gassmann, H. Weber, Opto-Electronics 3, 177 (1971).
    [CrossRef]
  10. C. V. Shank, A. Dienes, A. T. Silfvast, Appl. Phys. Lett. 17, 307 (1970).
    [CrossRef]
  11. K. L. Shaklee, R. F. Leheny, Appl. Phys. Lett. 18, 475 (1971).
    [CrossRef]
  12. P. Flamant, Y. H. Meyer, Opt. Commun. 7, 146 (1973).
    [CrossRef]
  13. L. W. Casperson, A. Yariv, IEEE J. Quantum Electron. QE-8, 80 (1972).
    [CrossRef]
  14. L. W. Casperson, Opt. Commun. 8, 85 (1973).
    [CrossRef]
  15. M. H. Gassmann, H. WeberAngew. Math. Phys. 22, 975 (1971).
    [CrossRef]
  16. B. B. Snavely, Proc. IEEE 57, 1374 (1969).
    [CrossRef]
  17. H. Nishihara, T. Inoue, J. Koyama, Appl. Phys. Lett. 25, 391 (1974).
    [CrossRef]
  18. C. H. Weysenfeld, Appl. Opt. 13, 2916 (1974).
    [CrossRef]
  19. C. Y. Wu, J. R. Lombardi, Opt. Commun. 7, 233 (1973).
    [CrossRef]
  20. A. A. Friesem, U. Ganiel, G. Neumann, Appl. Phys. Lett. 23, 249 (1973).
    [CrossRef]

1976 (2)

P. Burlamacchi, R. Pratesi, Appl. Phys. Lett. 28, 124 (1976).
[CrossRef]

P. Burlamacchi, R. Salimbeni, Opt. Commun. 17, 6 (1976).
[CrossRef]

1975 (2)

1974 (3)

P. Burlamacchi, R. Pratesi, R. Salimbeni, Opt. Commun. 11, 109 (1974).
[CrossRef]

H. Nishihara, T. Inoue, J. Koyama, Appl. Phys. Lett. 25, 391 (1974).
[CrossRef]

C. H. Weysenfeld, Appl. Opt. 13, 2916 (1974).
[CrossRef]

1973 (4)

C. Y. Wu, J. R. Lombardi, Opt. Commun. 7, 233 (1973).
[CrossRef]

A. A. Friesem, U. Ganiel, G. Neumann, Appl. Phys. Lett. 23, 249 (1973).
[CrossRef]

L. W. Casperson, Opt. Commun. 8, 85 (1973).
[CrossRef]

P. Flamant, Y. H. Meyer, Opt. Commun. 7, 146 (1973).
[CrossRef]

1972 (2)

L. W. Casperson, A. Yariv, IEEE J. Quantum Electron. QE-8, 80 (1972).
[CrossRef]

T. W. Hänsch, Appl. Opt. 11, 895 (1972).
[CrossRef] [PubMed]

1971 (3)

M. H. Gassmann, H. Weber, Opto-Electronics 3, 177 (1971).
[CrossRef]

M. H. Gassmann, H. WeberAngew. Math. Phys. 22, 975 (1971).
[CrossRef]

K. L. Shaklee, R. F. Leheny, Appl. Phys. Lett. 18, 475 (1971).
[CrossRef]

1970 (1)

C. V. Shank, A. Dienes, A. T. Silfvast, Appl. Phys. Lett. 17, 307 (1970).
[CrossRef]

1969 (1)

B. B. Snavely, Proc. IEEE 57, 1374 (1969).
[CrossRef]

Burlamacchi, P.

P. Burlamacchi, R. Pratesi, Appl. Phys. Lett. 28, 124 (1976).
[CrossRef]

P. Burlamacchi, R. Salimbeni, Opt. Commun. 17, 6 (1976).
[CrossRef]

P. Burlamacchi, R. Pratesi, L. Ronchi, Appl. Opt. 14, 79 (1975).
[CrossRef] [PubMed]

P. Burlamacchi, R. Pratesi, R. Salimbeni, Appl. Opt. 14, 1311 (1975).
[CrossRef] [PubMed]

P. Burlamacchi, R. Pratesi, R. Salimbeni, Opt. Commun. 11, 109 (1974).
[CrossRef]

P. Burlamacchi, R. Pratesi, R. Coisson, unpublished.

Casperson, L. W.

L. W. Casperson, Opt. Commun. 8, 85 (1973).
[CrossRef]

L. W. Casperson, A. Yariv, IEEE J. Quantum Electron. QE-8, 80 (1972).
[CrossRef]

Coisson, R.

P. Burlamacchi, R. Pratesi, R. Coisson, unpublished.

Dienes, A.

C. V. Shank, A. Dienes, A. T. Silfvast, Appl. Phys. Lett. 17, 307 (1970).
[CrossRef]

Flamant, P.

P. Flamant, Y. H. Meyer, Opt. Commun. 7, 146 (1973).
[CrossRef]

Friesem, A. A.

A. A. Friesem, U. Ganiel, G. Neumann, Appl. Phys. Lett. 23, 249 (1973).
[CrossRef]

Ganiel, U.

A. A. Friesem, U. Ganiel, G. Neumann, Appl. Phys. Lett. 23, 249 (1973).
[CrossRef]

Gassmann, M. H.

M. H. Gassmann, H. Weber, Opto-Electronics 3, 177 (1971).
[CrossRef]

M. H. Gassmann, H. WeberAngew. Math. Phys. 22, 975 (1971).
[CrossRef]

Hänsch, T. W.

Inoue, T.

H. Nishihara, T. Inoue, J. Koyama, Appl. Phys. Lett. 25, 391 (1974).
[CrossRef]

Koyama, J.

H. Nishihara, T. Inoue, J. Koyama, Appl. Phys. Lett. 25, 391 (1974).
[CrossRef]

Leheny, R. F.

K. L. Shaklee, R. F. Leheny, Appl. Phys. Lett. 18, 475 (1971).
[CrossRef]

Lombardi, J. R.

C. Y. Wu, J. R. Lombardi, Opt. Commun. 7, 233 (1973).
[CrossRef]

Meyer, Y. H.

P. Flamant, Y. H. Meyer, Opt. Commun. 7, 146 (1973).
[CrossRef]

Neumann, G.

A. A. Friesem, U. Ganiel, G. Neumann, Appl. Phys. Lett. 23, 249 (1973).
[CrossRef]

Nishihara, H.

H. Nishihara, T. Inoue, J. Koyama, Appl. Phys. Lett. 25, 391 (1974).
[CrossRef]

Pratesi, R.

P. Burlamacchi, R. Pratesi, Appl. Phys. Lett. 28, 124 (1976).
[CrossRef]

P. Burlamacchi, R. Pratesi, R. Salimbeni, Appl. Opt. 14, 1311 (1975).
[CrossRef] [PubMed]

P. Burlamacchi, R. Pratesi, L. Ronchi, Appl. Opt. 14, 79 (1975).
[CrossRef] [PubMed]

P. Burlamacchi, R. Pratesi, R. Salimbeni, Opt. Commun. 11, 109 (1974).
[CrossRef]

P. Burlamacchi, R. Pratesi, R. Coisson, unpublished.

Ronchi, L.

Salimbeni, R.

P. Burlamacchi, R. Salimbeni, Opt. Commun. 17, 6 (1976).
[CrossRef]

P. Burlamacchi, R. Pratesi, R. Salimbeni, Appl. Opt. 14, 1311 (1975).
[CrossRef] [PubMed]

P. Burlamacchi, R. Pratesi, R. Salimbeni, Opt. Commun. 11, 109 (1974).
[CrossRef]

Shaklee, K. L.

K. L. Shaklee, R. F. Leheny, Appl. Phys. Lett. 18, 475 (1971).
[CrossRef]

Shank, C. V.

C. V. Shank, A. Dienes, A. T. Silfvast, Appl. Phys. Lett. 17, 307 (1970).
[CrossRef]

Silfvast, A. T.

C. V. Shank, A. Dienes, A. T. Silfvast, Appl. Phys. Lett. 17, 307 (1970).
[CrossRef]

Snavely, B. B.

B. B. Snavely, Proc. IEEE 57, 1374 (1969).
[CrossRef]

Weber, H.

M. H. Gassmann, H. Weber, Opto-Electronics 3, 177 (1971).
[CrossRef]

M. H. Gassmann, H. WeberAngew. Math. Phys. 22, 975 (1971).
[CrossRef]

Weysenfeld, C. H.

C. H. Weysenfeld, Appl. Opt. 13, 2916 (1974).
[CrossRef]

Wu, C. Y.

C. Y. Wu, J. R. Lombardi, Opt. Commun. 7, 233 (1973).
[CrossRef]

Yariv, A.

L. W. Casperson, A. Yariv, IEEE J. Quantum Electron. QE-8, 80 (1972).
[CrossRef]

Angew. Math. Phys. (1)

M. H. Gassmann, H. WeberAngew. Math. Phys. 22, 975 (1971).
[CrossRef]

Appl. Opt. (4)

Appl. Phys. Lett. (5)

C. V. Shank, A. Dienes, A. T. Silfvast, Appl. Phys. Lett. 17, 307 (1970).
[CrossRef]

K. L. Shaklee, R. F. Leheny, Appl. Phys. Lett. 18, 475 (1971).
[CrossRef]

P. Burlamacchi, R. Pratesi, Appl. Phys. Lett. 28, 124 (1976).
[CrossRef]

H. Nishihara, T. Inoue, J. Koyama, Appl. Phys. Lett. 25, 391 (1974).
[CrossRef]

A. A. Friesem, U. Ganiel, G. Neumann, Appl. Phys. Lett. 23, 249 (1973).
[CrossRef]

IEEE J. Quantum Electron. (1)

L. W. Casperson, A. Yariv, IEEE J. Quantum Electron. QE-8, 80 (1972).
[CrossRef]

Opt. Commun. (5)

L. W. Casperson, Opt. Commun. 8, 85 (1973).
[CrossRef]

P. Burlamacchi, R. Pratesi, R. Salimbeni, Opt. Commun. 11, 109 (1974).
[CrossRef]

C. Y. Wu, J. R. Lombardi, Opt. Commun. 7, 233 (1973).
[CrossRef]

P. Burlamacchi, R. Salimbeni, Opt. Commun. 17, 6 (1976).
[CrossRef]

P. Flamant, Y. H. Meyer, Opt. Commun. 7, 146 (1973).
[CrossRef]

Opto-Electronics (1)

M. H. Gassmann, H. Weber, Opto-Electronics 3, 177 (1971).
[CrossRef]

Proc. IEEE (1)

B. B. Snavely, Proc. IEEE 57, 1374 (1969).
[CrossRef]

Other (2)

P. Burlamacchi, R. Pratesi, R. Coisson, unpublished.

H. Walther, Ed., Laser Spectroscopy (Springer, New York, 1976).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Experimental apparatus: PC, planar cell; SM, silvered mirror; FL, flashlamps; P, prism; L1, doublet lens; DG, diffraction grating; M, frequency selective feedback element; L, lens; BS, beam splitter; S, grating spectrograph; GG, ground glass; FP, Fabry-Perot interferometer; and PD, photodiode.

Fig. 2
Fig. 2

Plot of single and double pass superradiance intensity as a function of concentration. Cell thickness: 50 μm.

Fig. 3
Fig. 3

Plot of single and double pass superradiance intensity as a function of cell width d. Concentration: c = 3 × 10−3 M/liter.

Fig. 4
Fig. 4

Single pass superradiant amplification A as a function of active length L: d = 50 μm; c = 4 × 10−3-M/liter. The solid curve is a plot of A given by Eq. (1) with parameters given by Eq. (2).

Fig. 5
Fig. 5

Broadband, superradiant SP and DP spectra: d = 50 μm; c = 4 × 10−3-M/liter.

Fig. 6
Fig. 6

Broadband DP superradiant spectra at different dye concentrations: d = 100 μm; f = 180 mm; M, plane mirror. c (M/liter) = (a) 5 × 10−4; (b) 7.5 × 10−4; (c) 10−3; (d) 2.5 × 10−3; (e) 5 × 10−3; (f) 7.5 × 10−3; (g) 10−2.

Fig. 7
Fig. 7

Plot of the peak wavelength of the DP spectrum as a function of dye concentration. d = 100 μm.

Fig. 8
Fig. 8

Intermediate band spectra of DP laser. d = 50 μm; c = 4 × 10−3 M/liter; f(cm) = (a) 48, (b) 18, (c) 9.5

Fig. 9
Fig. 9

Plot of the full spectral bandwidth as a function of the ratio d/f. points corresponding to the spectra of Fig. 8 (fixed gap cell). ● variable gap Brewster angle cell; f = 48 cm. Solid lines represent the expected bandwidths for the two cases.

Fig. 10
Fig. 10

Fabry-Perot interferograms of the dye laser output for d = 25 μm, f = 85 cm. (a) Ten superimposed shots. (b) Single shot (c) Spectrum of a SP-132 He–Ne laser: separation, 0.55 GHz. Free spectral range, 8.4 GHz.

Fig. 11
Fig. 11

Observed line width (fwhm) vs f. d = 50 μm; c = 3 × 10−3 M/liter. Solid line represents the 1/f best fit.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

ln A + 2 α ( A - 1 ) = g o L ,
i o = 0.16 ( au ) ; 2 α = 0.0021 ; g o = 1.76 cm - 1 .
Δ λ = [ ( d λ ) / ( d θ ) ] Δ θ ,

Metrics