Abstract

A technique is given for calibrating an atomic nitrogen resonance lamp for use in determining column densities of atoms in specific states. A discharge lamp emitting the NI multiplets at 1200 Å and 1493 Å is studied by obtaining absorption by atoms in a magnetic field (0–2.5 T). This magnetic scanning technique enables the determination of the absorbing atom column density, and an empirical curve of growth is obtained because the atomic f-value is known. Thus, the calibrated lamp can be used in the determination of atomic column densities.

© 1976 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C-L Lin, D. A. Parkes, F. Kaufman, J. Chem. Phys. 53, 3896 (1970).
    [CrossRef]
  2. P. H. G. Dickinson, R. C. Bolden, R. A. Young, Nature 252, 289 (1974).
    [CrossRef]
  3. J. G. Anderson, Geophys. Res. Lett. 2, 231 (1975).
    [CrossRef]
  4. W. Braun, A. M. Bass, D. D. Davis, J. Opt. Soc. Am. 60, 166 (1970).
    [CrossRef]
  5. J. Blamont, C. R. Acad. Sci. 237, 1320 (1953).
  6. N. loli, F. Strumia, A. Moretti, J. Opt. Soc. Am. 61, 1251 (1971).
    [CrossRef]
  7. T. J. Hollander, H. P. Broida, J. Quant. Spectrosc. Radiat. Transfer 7, 965 (1967).
    [CrossRef]
  8. C. G. Mitchell, M. W. Zemansky, Resonance Radiation and Excited Atoms (Cambridge U. P., London, 1971).
  9. E. V. Condon, G. H. Shortley, The Theory of Atomic Spectra (Cambridge U. P., New York, 1963).
  10. B. W. Shore, D. H. Menzel, Principles of Atomic Spectra (Wiley, New York, 1968).
  11. V. Kaufman, J. F. Ward, Appl. Opt. 6, 43 (1967).
    [CrossRef] [PubMed]
  12. R. L. Kelly, Atomic Emission Lines Below 2000 Angstroms, NRL Report 6648 (U.S. Government Printing Office, Washington, D.C., 1968).
  13. W. L. Wise, M. W. Smith, B. M. Glennon, Atomic Transition Probabilities, NSRDS-NBS4 (U.S. Government Printing Office, Washington, D.C., 1966), Vol. 1.
  14. G. M. Lawrence, Phys. Rev. 175, 40 (1968).
    [CrossRef]
  15. P. D. Dumont, E. Biemont and N. Grevesse,J. Quant. Spectrosc. Radiat. Transfer 14, 1127 (1974).
    [CrossRef]
  16. R. W. Hamming, Introduction to Applied Numerical Analysis (McGraw-Hill, New York, 1971).
  17. H. M. Poland, G. M. Lawrence, J. Chem. Phys. 58, 1425 (1973).
    [CrossRef]
  18. L. G. Piper, Chem. Phys. Lett. 28, 276 (1974).
    [CrossRef]

1975 (1)

J. G. Anderson, Geophys. Res. Lett. 2, 231 (1975).
[CrossRef]

1974 (3)

P. H. G. Dickinson, R. C. Bolden, R. A. Young, Nature 252, 289 (1974).
[CrossRef]

P. D. Dumont, E. Biemont and N. Grevesse,J. Quant. Spectrosc. Radiat. Transfer 14, 1127 (1974).
[CrossRef]

L. G. Piper, Chem. Phys. Lett. 28, 276 (1974).
[CrossRef]

1973 (1)

H. M. Poland, G. M. Lawrence, J. Chem. Phys. 58, 1425 (1973).
[CrossRef]

1971 (1)

1970 (2)

W. Braun, A. M. Bass, D. D. Davis, J. Opt. Soc. Am. 60, 166 (1970).
[CrossRef]

C-L Lin, D. A. Parkes, F. Kaufman, J. Chem. Phys. 53, 3896 (1970).
[CrossRef]

1968 (1)

G. M. Lawrence, Phys. Rev. 175, 40 (1968).
[CrossRef]

1967 (2)

T. J. Hollander, H. P. Broida, J. Quant. Spectrosc. Radiat. Transfer 7, 965 (1967).
[CrossRef]

V. Kaufman, J. F. Ward, Appl. Opt. 6, 43 (1967).
[CrossRef] [PubMed]

1953 (1)

J. Blamont, C. R. Acad. Sci. 237, 1320 (1953).

Anderson, J. G.

J. G. Anderson, Geophys. Res. Lett. 2, 231 (1975).
[CrossRef]

Bass, A. M.

Blamont, J.

J. Blamont, C. R. Acad. Sci. 237, 1320 (1953).

Bolden, R. C.

P. H. G. Dickinson, R. C. Bolden, R. A. Young, Nature 252, 289 (1974).
[CrossRef]

Braun, W.

Broida, H. P.

T. J. Hollander, H. P. Broida, J. Quant. Spectrosc. Radiat. Transfer 7, 965 (1967).
[CrossRef]

Condon, E. V.

E. V. Condon, G. H. Shortley, The Theory of Atomic Spectra (Cambridge U. P., New York, 1963).

Davis, D. D.

Dickinson, P. H. G.

P. H. G. Dickinson, R. C. Bolden, R. A. Young, Nature 252, 289 (1974).
[CrossRef]

Dumont, P. D.

P. D. Dumont, E. Biemont and N. Grevesse,J. Quant. Spectrosc. Radiat. Transfer 14, 1127 (1974).
[CrossRef]

Glennon, B. M.

W. L. Wise, M. W. Smith, B. M. Glennon, Atomic Transition Probabilities, NSRDS-NBS4 (U.S. Government Printing Office, Washington, D.C., 1966), Vol. 1.

Hamming, R. W.

R. W. Hamming, Introduction to Applied Numerical Analysis (McGraw-Hill, New York, 1971).

Hollander, T. J.

T. J. Hollander, H. P. Broida, J. Quant. Spectrosc. Radiat. Transfer 7, 965 (1967).
[CrossRef]

Kaufman, F.

C-L Lin, D. A. Parkes, F. Kaufman, J. Chem. Phys. 53, 3896 (1970).
[CrossRef]

Kaufman, V.

Kelly, R. L.

R. L. Kelly, Atomic Emission Lines Below 2000 Angstroms, NRL Report 6648 (U.S. Government Printing Office, Washington, D.C., 1968).

Lawrence, G. M.

H. M. Poland, G. M. Lawrence, J. Chem. Phys. 58, 1425 (1973).
[CrossRef]

G. M. Lawrence, Phys. Rev. 175, 40 (1968).
[CrossRef]

Lin, C-L

C-L Lin, D. A. Parkes, F. Kaufman, J. Chem. Phys. 53, 3896 (1970).
[CrossRef]

loli, N.

Menzel, D. H.

B. W. Shore, D. H. Menzel, Principles of Atomic Spectra (Wiley, New York, 1968).

Mitchell, C. G.

C. G. Mitchell, M. W. Zemansky, Resonance Radiation and Excited Atoms (Cambridge U. P., London, 1971).

Moretti, A.

Parkes, D. A.

C-L Lin, D. A. Parkes, F. Kaufman, J. Chem. Phys. 53, 3896 (1970).
[CrossRef]

Piper, L. G.

L. G. Piper, Chem. Phys. Lett. 28, 276 (1974).
[CrossRef]

Poland, H. M.

H. M. Poland, G. M. Lawrence, J. Chem. Phys. 58, 1425 (1973).
[CrossRef]

Shore, B. W.

B. W. Shore, D. H. Menzel, Principles of Atomic Spectra (Wiley, New York, 1968).

Shortley, G. H.

E. V. Condon, G. H. Shortley, The Theory of Atomic Spectra (Cambridge U. P., New York, 1963).

Smith, M. W.

W. L. Wise, M. W. Smith, B. M. Glennon, Atomic Transition Probabilities, NSRDS-NBS4 (U.S. Government Printing Office, Washington, D.C., 1966), Vol. 1.

Strumia, F.

Ward, J. F.

Wise, W. L.

W. L. Wise, M. W. Smith, B. M. Glennon, Atomic Transition Probabilities, NSRDS-NBS4 (U.S. Government Printing Office, Washington, D.C., 1966), Vol. 1.

Young, R. A.

P. H. G. Dickinson, R. C. Bolden, R. A. Young, Nature 252, 289 (1974).
[CrossRef]

Zemansky, M. W.

C. G. Mitchell, M. W. Zemansky, Resonance Radiation and Excited Atoms (Cambridge U. P., London, 1971).

Appl. Opt. (1)

C. R. Acad. Sci. (1)

J. Blamont, C. R. Acad. Sci. 237, 1320 (1953).

Chem. Phys. Lett. (1)

L. G. Piper, Chem. Phys. Lett. 28, 276 (1974).
[CrossRef]

E. Biemont and N. Grevesse,J. Quant. Spectrosc. Radiat. Transfer (1)

P. D. Dumont, E. Biemont and N. Grevesse,J. Quant. Spectrosc. Radiat. Transfer 14, 1127 (1974).
[CrossRef]

Geophys. Res. Lett. (1)

J. G. Anderson, Geophys. Res. Lett. 2, 231 (1975).
[CrossRef]

J. Chem. Phys. (2)

C-L Lin, D. A. Parkes, F. Kaufman, J. Chem. Phys. 53, 3896 (1970).
[CrossRef]

H. M. Poland, G. M. Lawrence, J. Chem. Phys. 58, 1425 (1973).
[CrossRef]

J. Opt. Soc. Am. (2)

J. Quant. Spectrosc. Radiat. Transfer (1)

T. J. Hollander, H. P. Broida, J. Quant. Spectrosc. Radiat. Transfer 7, 965 (1967).
[CrossRef]

Nature (1)

P. H. G. Dickinson, R. C. Bolden, R. A. Young, Nature 252, 289 (1974).
[CrossRef]

Phys. Rev. (1)

G. M. Lawrence, Phys. Rev. 175, 40 (1968).
[CrossRef]

Other (6)

R. W. Hamming, Introduction to Applied Numerical Analysis (McGraw-Hill, New York, 1971).

R. L. Kelly, Atomic Emission Lines Below 2000 Angstroms, NRL Report 6648 (U.S. Government Printing Office, Washington, D.C., 1968).

W. L. Wise, M. W. Smith, B. M. Glennon, Atomic Transition Probabilities, NSRDS-NBS4 (U.S. Government Printing Office, Washington, D.C., 1966), Vol. 1.

C. G. Mitchell, M. W. Zemansky, Resonance Radiation and Excited Atoms (Cambridge U. P., London, 1971).

E. V. Condon, G. H. Shortley, The Theory of Atomic Spectra (Cambridge U. P., New York, 1963).

B. W. Shore, D. H. Menzel, Principles of Atomic Spectra (Wiley, New York, 1968).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Absolute photon absorption cross sections (calculated) for the NI 1199.5490-Å line, with B = O T, ½ T, 1 T, and 2 T. The curves are symmetrical about Δλ = 0. D is the 1/e Doppler width. Temperature is 300 K, and Δλ is measured from line center.

Fig. 2
Fig. 2

Apparatus used to make the Zeeman scans. The microwave discharge makes the nitrogen atoms for absorbers; the Discharge Lamp generates the 1200-Å and 1493-Å multiplets in emission.

Fig. 3
Fig. 3

Examples of experimental absorption cell transmissions vs magnetic field for the 1200-Å multiplet. The absorber column density is the same in both cases. The discharge light source has only impurity nitrogen in the thin case and ~0.01 Torr N2 in the thick case. The insets show the reconstructed emission line shapes smoothed with a one-Doppler width Gaussian. The small vertical arrows show the positions of the delta functions chosen by the least-squares fitting process.

Fig. 4
Fig. 4

Zero field curves of growth for the optically thin lamp. Log transmission vs the column density obtained from the least square fit. The solid lines are straight, the dashed line a possible approximation to the data.

Tables (1)

Tables Icon

Table I Nitrogen Multiplet Parameters

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

σ ( Δ λ ) = σ 0 exp ( - Δ λ 2 / D 2 ) ,
σ 0 = π R 0 f λ 0 2 / D ,
σ d λ = π R 0 f λ 0 2 .
σ ( B , Δ λ ) = k { S k σ 0 exp [ - ( Δ λ - Z k B ) 2 D 2 ] + S k σ 0 exp [ - ( Δ λ + Z k B ) 2 D 2 ] } ,
Z k = λ 0 2 e Δ ( g M ) k / ( 4 π m c ) ,
I ( N L , B ) / I 0 = i I i E ( λ ) exp [ - N L σ i ( B , λ ) ] d λ ,
E ( λ ) = j a j δ ( λ - λ j ) ,
j a j = 1.
Y n I ( N L , B n ) / I 0 I I i j a j exp [ - N L σ i ( B n , λ j ) ] .

Metrics