Abstract

No abstract available.

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Tréheux, in Applications de l’Holographie, J. C. Vienot, Ed. Univ. Besançon, 13-3, (1970).
  2. E. N. Leith et al., Appl. Opt. 5, 1303 (1966).
    [CrossRef] [PubMed]
  3. H. M. Smith, Principles of Holography (Wiley, New York, 1969), Ch.4.
  4. H. Kogelnik, Bell Sys. Tech. J. 48, 2909 (1969).
  5. N. Douklias, J. Shamir, Appl. Opt. 12, 364 (1973).
    [CrossRef] [PubMed]
  6. N. Brousseau, H. H. Arsenault, Appl. Opt. 14, 1679 (1975).
    [CrossRef] [PubMed]
  7. A. Vander Lugt, Appl. Opt. 5, 1760 (1966).
    [CrossRef]
  8. M. J. Bage, “Coherent Lensless Matched Filter and an Application to Feature Extraction in Character Recognition”, Ph.D. thesis, University of British Columbia, Vancouver, Canada (1975).
  9. K. Biedermann et al., Opt. Commun. 6, 205 (1972).
    [CrossRef]
  10. M. J. Bage, M. P. Beddoes, J. Opt. Soc. Am. 63, 1306 (1973).

1975 (1)

1973 (2)

N. Douklias, J. Shamir, Appl. Opt. 12, 364 (1973).
[CrossRef] [PubMed]

M. J. Bage, M. P. Beddoes, J. Opt. Soc. Am. 63, 1306 (1973).

1972 (1)

K. Biedermann et al., Opt. Commun. 6, 205 (1972).
[CrossRef]

1969 (1)

H. Kogelnik, Bell Sys. Tech. J. 48, 2909 (1969).

1966 (2)

Arsenault, H. H.

Bage, M. J.

M. J. Bage, M. P. Beddoes, J. Opt. Soc. Am. 63, 1306 (1973).

M. J. Bage, “Coherent Lensless Matched Filter and an Application to Feature Extraction in Character Recognition”, Ph.D. thesis, University of British Columbia, Vancouver, Canada (1975).

Beddoes, M. P.

M. J. Bage, M. P. Beddoes, J. Opt. Soc. Am. 63, 1306 (1973).

Biedermann, K.

K. Biedermann et al., Opt. Commun. 6, 205 (1972).
[CrossRef]

Brousseau, N.

Douklias, N.

Kogelnik, H.

H. Kogelnik, Bell Sys. Tech. J. 48, 2909 (1969).

Leith, E. N.

Shamir, J.

Smith, H. M.

H. M. Smith, Principles of Holography (Wiley, New York, 1969), Ch.4.

Tréheux, M.

M. Tréheux, in Applications de l’Holographie, J. C. Vienot, Ed. Univ. Besançon, 13-3, (1970).

Vander Lugt, A.

Appl. Opt. (4)

Bell Sys. Tech. J. (1)

H. Kogelnik, Bell Sys. Tech. J. 48, 2909 (1969).

J. Opt. Soc. Am. (1)

M. J. Bage, M. P. Beddoes, J. Opt. Soc. Am. 63, 1306 (1973).

Opt. Commun. (1)

K. Biedermann et al., Opt. Commun. 6, 205 (1972).
[CrossRef]

Other (3)

M. Tréheux, in Applications de l’Holographie, J. C. Vienot, Ed. Univ. Besançon, 13-3, (1970).

H. M. Smith, Principles of Holography (Wiley, New York, 1969), Ch.4.

M. J. Bage, “Coherent Lensless Matched Filter and an Application to Feature Extraction in Character Recognition”, Ph.D. thesis, University of British Columbia, Vancouver, Canada (1975).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Angular coordinates θxi and θyi of the propagation vector k ¯ i.

Fig. 2
Fig. 2

Sensitivity of various signals layouts to the volume effect of the recording medium.

Fig. 3
Fig. 3

Recorded and readout signals that, for a given space-bandwidth product, are least sensitive to the volume effect: (a) + layout; (b) I layout.

Equations (17)

Equations on this page are rendered with MathJax. Learn more.

k ¯ t = k ¯ s
θ xt = θ xs and θ yt = θ ys .
θ yt = θ ys + Δ θ yt ,
I = sinc 2 M L ( sin M L M L ) 2 ,
M L = π n e T λ Δ θ yt ( sin θ ys - tan θ yr cos θ ys ) .
M L = π T λ n e [ Δ θ x t ( θ x s - θ x r ) + Δ θ y t ( θ y s - θ y r ) ] .
max M L = π T λ n e [ Δ θ xt θ xr - θ xs + Δ θ yt θ yr - θ ys ]
I = sinc 2 ( minimax M L ) .
P = P x P y and Q = Q x Q y .
H tx = Q x ϕ and H ty = Q y ϕ .
H sx = [ ( P x - 1 ) Q x + 1 ] ϕ , H sy = [ ( P y - 1 ) Q x + 1 ] ϕ .
minimax Δ θ xt = ( H sx + H tx ) / 2 , minimax Δ θ yt = ( H sy + H ty ) / 2.
minimax θ yr - θ ys = H sy / 2.
θ xr = 3 2 H sx + H tx .
minimax θ xr - θ xs = θ xr + H sx / 2 = 2 H sx + H tx .
minimax M L = π T ϕ 2 2 λ n e { ( P x Q x + 1 ) [ 2 ( P x Q x + 1 ) - Q x ] + ( P y Q y + 1 ) [ ( P y Q y + 1 ) - Q y ] / 2 } .
+ layout : P x Q x = 32 and Q x = 32 ; Q y = 1 , P x = 1 , P y = 32 ; I layout : P x Q x = 16 and Q x = 1 ; Q y = 32 , P x = 16 , P y = 2.

Metrics