Abstract

The effects of turbulence induced pathlength fluctuations on the accuracy of single color and two color laser ranging systems are examined. Correlation and structure functions for the path deviations are derived using several proposed models for the variation of Cn2 with altitude. For single color systems, random pathlength fluctuations can limit the accuracy of a range measurement to a few centimeters when the turbulence is strong (Cn2 ~ 10−13 m−2/3), and the effective propagation path is long (>10 km). Two color systems can partially correct for the random path fluctuations so that in most cases their accuracy is limited to a few millimeters. However, at low elevation angles for satellite ranging (<20°) and over long horizontal paths, two color systems can also have errors approaching a few centimeters.

© 1976 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (8)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (35)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription