Abstract

No abstract available.

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Born, E. Wolf, Principles of Optics (Pergamon, New York, 1970), p. 62.
  2. C. G. Young, Appl. Opt. 5, 993 (1966).
    [CrossRef] [PubMed]
  3. C. G. Young, Proc. IEEE 57, 1267 (1969).
    [CrossRef]
  4. F. P. Schafer, Ed., Dye Lasers (Springer-Verlag, New York, 1973), Chap. 4.
    [CrossRef]
  5. J. M. Woodall, H. J. Hovel, J. Vac. Sci. Technol. 12, 1000 (1975).
    [CrossRef]
  6. Ref. 4, p. 89.
  7. C. V. Shank, Rev. Mod. Phys. 47, 649 (1975). See also Ref. 4, p. 160.
    [CrossRef]

1975 (2)

J. M. Woodall, H. J. Hovel, J. Vac. Sci. Technol. 12, 1000 (1975).
[CrossRef]

C. V. Shank, Rev. Mod. Phys. 47, 649 (1975). See also Ref. 4, p. 160.
[CrossRef]

1969 (1)

C. G. Young, Proc. IEEE 57, 1267 (1969).
[CrossRef]

1966 (1)

Born, M.

M. Born, E. Wolf, Principles of Optics (Pergamon, New York, 1970), p. 62.

Hovel, H. J.

J. M. Woodall, H. J. Hovel, J. Vac. Sci. Technol. 12, 1000 (1975).
[CrossRef]

Shank, C. V.

C. V. Shank, Rev. Mod. Phys. 47, 649 (1975). See also Ref. 4, p. 160.
[CrossRef]

Wolf, E.

M. Born, E. Wolf, Principles of Optics (Pergamon, New York, 1970), p. 62.

Woodall, J. M.

J. M. Woodall, H. J. Hovel, J. Vac. Sci. Technol. 12, 1000 (1975).
[CrossRef]

Young, C. G.

Appl. Opt. (1)

J. Vac. Sci. Technol. (1)

J. M. Woodall, H. J. Hovel, J. Vac. Sci. Technol. 12, 1000 (1975).
[CrossRef]

Proc. IEEE (1)

C. G. Young, Proc. IEEE 57, 1267 (1969).
[CrossRef]

Rev. Mod. Phys. (1)

C. V. Shank, Rev. Mod. Phys. 47, 649 (1975). See also Ref. 4, p. 160.
[CrossRef]

Other (3)

M. Born, E. Wolf, Principles of Optics (Pergamon, New York, 1970), p. 62.

F. P. Schafer, Ed., Dye Lasers (Springer-Verlag, New York, 1973), Chap. 4.
[CrossRef]

Ref. 4, p. 89.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

Schematic of a luminescent solar collector. The solar radiation is incident normally on the collector surface, which is in the xy plane. A perfectly reflecting mirror surface is at y = 0, and the photocell is at y = L. The angles θ and ϕ in Eq. (2) are the usual spherical polar angles referred to the xyz axes in the figure.

Fig. 2
Fig. 2

Collection efficiency for a luminescent greenhouse collector as a function of αeL computed from Eq. (2). A quarter-wave AR coating of index nAR = (ncns)1/2 is assumed to be at the collector–semiconductor interface.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

Q A = 0 λ c d λ N ( λ ) { 1 - exp [ - α ( λ ) d ] } / 0 λ c d λ N ( λ ) ,
Q c = ( 2 π L ) - 1 0 L d y 0 π / 2 d ϕ θ c π / 2 × sin θ d θ { exp [ - α e ( L - y ) / sin θ sin ϕ ] + exp [ - α e ( L + y ) / sin θ sin ϕ ] } { 2 - r s ( θ , ϕ ) 2 - r p ( θ , ϕ ) 2 } ,
Q C cos θ c , α e L 1 , and Q C 1 4 α e L { 1 - 2 θ c π + sin 2 θ c π } , α e L 1.

Metrics