Abstract

Designs are described for flexible hollow waveguides with low ir loss over distances on the order of 1 m. Transmission losses at 10.6 μm are calculated, and the effect of bends and twists is discussed. A hollow combination metal-dielectric-walled rectangular waveguide is proposed that can have transmission as high as 95% for a 1-m length, while bent with a 1-m radius of curvature.

© 1976 Optical Society of America

Full Article  |  PDF Article

Corrections

E. Garmire, T. McMahon, and M. Bass, "Propagation of ir light in flexible hollow waveguides: erratum," Appl. Opt. 15, 2028_1-2028 (1976)
https://www.osapublishing.org/ao/abstract.cfm?uri=ao-15-9-2028_1

References

  • View by:
  • |
  • |
  • |

  1. E. A. J. Marcatili, R. A. Schmeltzer, Bell Syst. Tech. J. 43, 1783 (1964).
  2. L. Lewin, IEEE Trans. Microwave Theory Tech. MT-22, 718 (1974).
    [CrossRef]
  3. M. Heiblum, J. H. Harris, IEEE J. Quantum Electron. QE-11, 75 (1975).
    [CrossRef]
  4. I. Simon, H. O. McMahon, J. Chem. Phys. 21, 23 (1953).
    [CrossRef]
  5. R. A. Waldron, Theory of Guided Electromagnetic Waves (Van Nostrand Reinhold, London, 1970), p. 323.
  6. H. Nishihara, T. Inoue, J. Koyama, Appl. Phys. Lett. 25, 391 (1974).
    [CrossRef]
  7. L. Lewin, Proc. IRE 102B, 75 (1955).
  8. D. Marcuse, IEEE J. Quantum Electron. QE-8, 661 (1972).
    [CrossRef]

1975 (1)

M. Heiblum, J. H. Harris, IEEE J. Quantum Electron. QE-11, 75 (1975).
[CrossRef]

1974 (2)

L. Lewin, IEEE Trans. Microwave Theory Tech. MT-22, 718 (1974).
[CrossRef]

H. Nishihara, T. Inoue, J. Koyama, Appl. Phys. Lett. 25, 391 (1974).
[CrossRef]

1972 (1)

D. Marcuse, IEEE J. Quantum Electron. QE-8, 661 (1972).
[CrossRef]

1964 (1)

E. A. J. Marcatili, R. A. Schmeltzer, Bell Syst. Tech. J. 43, 1783 (1964).

1955 (1)

L. Lewin, Proc. IRE 102B, 75 (1955).

1953 (1)

I. Simon, H. O. McMahon, J. Chem. Phys. 21, 23 (1953).
[CrossRef]

Harris, J. H.

M. Heiblum, J. H. Harris, IEEE J. Quantum Electron. QE-11, 75 (1975).
[CrossRef]

Heiblum, M.

M. Heiblum, J. H. Harris, IEEE J. Quantum Electron. QE-11, 75 (1975).
[CrossRef]

Inoue, T.

H. Nishihara, T. Inoue, J. Koyama, Appl. Phys. Lett. 25, 391 (1974).
[CrossRef]

Koyama, J.

H. Nishihara, T. Inoue, J. Koyama, Appl. Phys. Lett. 25, 391 (1974).
[CrossRef]

Lewin, L.

L. Lewin, IEEE Trans. Microwave Theory Tech. MT-22, 718 (1974).
[CrossRef]

L. Lewin, Proc. IRE 102B, 75 (1955).

Marcatili, E. A. J.

E. A. J. Marcatili, R. A. Schmeltzer, Bell Syst. Tech. J. 43, 1783 (1964).

Marcuse, D.

D. Marcuse, IEEE J. Quantum Electron. QE-8, 661 (1972).
[CrossRef]

McMahon, H. O.

I. Simon, H. O. McMahon, J. Chem. Phys. 21, 23 (1953).
[CrossRef]

Nishihara, H.

H. Nishihara, T. Inoue, J. Koyama, Appl. Phys. Lett. 25, 391 (1974).
[CrossRef]

Schmeltzer, R. A.

E. A. J. Marcatili, R. A. Schmeltzer, Bell Syst. Tech. J. 43, 1783 (1964).

Simon, I.

I. Simon, H. O. McMahon, J. Chem. Phys. 21, 23 (1953).
[CrossRef]

Waldron, R. A.

R. A. Waldron, Theory of Guided Electromagnetic Waves (Van Nostrand Reinhold, London, 1970), p. 323.

Appl. Phys. Lett. (1)

H. Nishihara, T. Inoue, J. Koyama, Appl. Phys. Lett. 25, 391 (1974).
[CrossRef]

Bell Syst. Tech. J. (1)

E. A. J. Marcatili, R. A. Schmeltzer, Bell Syst. Tech. J. 43, 1783 (1964).

IEEE J. Quantum Electron. (2)

M. Heiblum, J. H. Harris, IEEE J. Quantum Electron. QE-11, 75 (1975).
[CrossRef]

D. Marcuse, IEEE J. Quantum Electron. QE-8, 661 (1972).
[CrossRef]

IEEE Trans. Microwave Theory Tech. (1)

L. Lewin, IEEE Trans. Microwave Theory Tech. MT-22, 718 (1974).
[CrossRef]

J. Chem. Phys. (1)

I. Simon, H. O. McMahon, J. Chem. Phys. 21, 23 (1953).
[CrossRef]

Proc. IRE (1)

L. Lewin, Proc. IRE 102B, 75 (1955).

Other (1)

R. A. Waldron, Theory of Guided Electromagnetic Waves (Van Nostrand Reinhold, London, 1970), p. 323.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

The EH11 hybrid mode in hollow, cylindrical, dielectric waveguides.

Fig. 2
Fig. 2

The TE01 mode in hollow, cylindrical, metal waveguides.

Fig. 3
Fig. 3

The TE10 mode in hollow, rectangular, metal waveguides.

Fig. 4
Fig. 4

Flexible rectangular ribbon metal ir waveguide. Flexure is obtained with a bend in the thin direction, a twist of 90°, and a subsequent bend in the thin dimension. The planes of the two bends are at right angles to each other, with the first bend in the yz plane and the second bend in the xz plane.

Fig. 5
Fig. 5

Focusing tip for rectangular, hollow metal waveguide.

Fig. 6
Fig. 6

Hollow, rectangular combination metal-dielectric waveguide.

Tables (1)

Tables Icon

Table I Values of Geometrical Factors upq [qth Root of the Equation Jp−1(upq) = 0] and the Loss Factors γpq and ηpq used in Eq. (1) for Aluminum Walls

Equations (18)

Equations on this page are rendered with MathJax. Learn more.

α p q = γ p q λ 2 a 3 ( 1 + η p q a 6 λ 4 R 2 ) ,
γ p q = ( u p q 2 π ) 2 Re ν p , ν p = { 1 ( ν 2 1 ) 1 / 2 ; TE 0 q modes , ν 2 ( ν 2 1 ) 1 / 2 ; TM 0 q modes , ½ ( ν 2 + 1 ) ( ν 2 1 ) 1 / 2 ; EH p q modes p 0 ,
η p q = 4 3 ( 2 π u p q ) 4 { 1 p ( p 2 ) u p q 2 + 3 4 δ p ( ± 1 ) Re ( ν 2 1 ) 1 / 2 Re [ ν 2 + 1 ( ν 2 1 ) 1 / 2 ] cos 2 θ 0 } ,
γ 11 = 0.23 , 32 η 11 114 .
( 2 π a / λ ) | ν | u p q .
α p q = α 0 a β p q [ 1 ( λ u p q / 2 π a ) 2 ] 1 / 2 ,
α 0 = ( ω 0 / 2 σ ) 1 / 2
β p q = { 1 , TM modes ( λ u p q / 2 π a ) 2 + P 2 / [ ( 2 π a / λ ) 2 P 2 ] , TE modes ,
α p q TM = α 0 / a . α p q TE = α 0 λ 2 a 3 ( u p q 2 + P 2 4 π 2 ) .
α 01 TE = 0.0015 ( λ 2 / a 3 ) .
Re ν P = Re [ 1 ( ν 2 1 ) 1 / 2 ] Re ( 1 ν ) 1 2 n .
α 0 q TE ( R ) = γ 0 q λ 2 a 3 [ 1 + 4 3 ( 2 π a λ u 0 q ) 4 ( a R ) 2 ] .
α 01 TE ( R ) = 0.002 λ 2 a 3 ( 1 + 10 a 6 λ 4 R 2 ) .
α 10 TE = α 0 ( λ 2 2 a 3 + 1 b ) .
α 10 TE ( R ) = α 0 λ 2 2 a 3 ( 1 + 21 a 6 λ 4 R 2 ) .
α 10 TM = λ 2 b 3 Re ν 2 ( ν 2 1 ) 1 / 2 .
α 10 c = λ 2 a 3 ( ω 0 8 σ ) 1 / 2 + λ 2 b 3 Re ν 2 ( ν 2 1 ) 1 / 2 .
α 0 = 0.002 ( λ 2 / a 3 ) + ( λ 2 / b 3 ) .

Metrics