Abstract

A high resolution near ir Fourier spectrometer with the same general design as previously described laboratory instruments has been built for astronomical observations at a coudé focus. Present spectral range is 0.8–3.5 μm with PbS and Ge detectors and maximum path difference 1 m. The servo system can accommodate various recording modes: stepping or continuous scan, path difference modulation, sky chopping. A real time computer is incorporated into the system, which has been set up at the Hale 500-cm telescope on Mount Palomar. Samples of the results are given.

© 1975 Optical Society of America

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Connes, P. Connes, J. Opt. Soc. Am. 56, 896 (1966).
    [CrossRef]
  2. J. Connes, P. Connes, J. P. Maillard, J. Phys 28C2, 136 (1967).
  3. P. Connes, Annu. Rev. Astron. Astrophys. 8, 209 (1970).
    [CrossRef]
  4. U. Fink, H. P. Larson, R. F. Poppen, Astrophys. J. 187, 407 (1974);and Astrophys. J. 171, 291 (1972).
    [CrossRef]
  5. J. Pinard, J. Phys. 28C2, 136 (1967);Ann. Phys. 4, 147 (1967).
  6. An astronomical interferometer comparable to our types I and II has been built independently by Beer et al.7 and has produced many astronomical results; latest reference is Ref. 8. An airborne version has been described by Schindler9 and used aboard the Concorde supersonic aircraft to record solar spectra.10 Another instrument has been built by Malbrouck (University of Liège) and set up at the Jungfraujoch Observatory, mostly for recording ir solar spectra. There is a 2-m path difference laboratory interferometer at Air Force Cambridge Research Laboratories (Pritchard, Sakai and Vanasse AFCRL Report TR-73-0223). Lastly, an astronomical interferometer has been built by Wayte for high resolution work in the visible with the Isaac Newton telescope in Herstmonceux. This brief review mentions only operating systems related to our own by similarity in type of construction and mode of operation.
  7. R. Beer, R. H. Norton, C. H. Seaman, Rev. Sci. Instrum. 42, 1393 (1971).
    [CrossRef]
  8. R. Beer, D. L. Lambert, C. Sneden, Publ. Astron. Soc. Pac. 86, 806 (1974).
    [CrossRef]
  9. R. A. Schindler, Appl. Opt. 9, 301 (1970).
    [CrossRef] [PubMed]
  10. C. B. Farmer, Can. J. Chem. 52, 544 (1974);Proc. CIAP Conf. (1974) (in print) (1971).
    [CrossRef]
  11. J. Connes, H. Delouis, P. Connes, G. Guelachvili, J. P. Maillard, G. Michel, Nouv. Rev. Opt. Appl. 1, 3 (1971).
    [CrossRef]
  12. G. Guelachvili, Nouv. Rev. Opt. Appl. 3, 317 (1972).
    [CrossRef]
  13. J. Connes, in Aspen International Conference in Fourier Spectroscopy, AFCRL Spec. Rep. 114 (1971), p. 83.
  14. H. Delouis, in Aspen Int. Conf. on Fourier Spectrosc., AFCRL Spec. Report 114 (1970), p. 145.
  15. G. Guelachvili, Opt. Commun. 8, 171 (1973).
    [CrossRef]
  16. C. Amiot, G. Guelachvili, J. Mol. Spectrosc. 51, 475 (1974).
    [CrossRef]
  17. E. Luc-Koenig, C. Morillon, J. Verges, Physica 70, 175 (1973).
    [CrossRef]
  18. J. P. Maillard, M. Combes, Th. Encrenaz, J. Lecacheux, Astron. Astrophys. 25, 219 (1973);Astron. Astrophys. 28, 457 (1973).
  19. P. Connes, G. Michel, in Aspen International Conference on Fourier Spectroscopy, AFCRL Spec. Rep. 114 (1971), p. 313.
  20. G. Michel, Appl. Opt. 11, 2671 (1972).
    [CrossRef] [PubMed]
  21. P. Connes, G. Michel, Astrophys. J. 190, L29 (1974).
    [CrossRef]
  22. W. H. Steel, Opt. Acta 21, 599 (1974).
    [CrossRef]
  23. RCA Corporation, Montreal, Canada.
  24. Interferometer V uses silicon detectors with builtin preamplifiers instead.
  25. M. Cuisenier, J. Pinard, J. Phys. 28C2, 97 (1967).
  26. W. H. Steel, Interferometry (Cambridge U.P., Cambridge, England, 1967), p. 84.
  27. The compensation process can equally well be understood in different terms. Each cat's eye is a point-symmetrical retroreflector, i.e., all rays are returned symmetrical with respect to a particular point of the axis: the image of the MF center of curvature given by ME. Varying the curvature of MF in the manner described above means keeping this center of symmetry stationary while the cat's eye moves. Then the two emerging rays originating from a given incoming ray are coincident, a necessary condition for field compensation.
  28. G. Lemaitre, Thèse, Faculte des Sciences de Marseille (1973).
  29. Two recent references on flexible mirrors are Refs. 30 and 31; in the second case the design is comparable to our own. No indication of actual accuracy is given.
  30. S. Mikoshiba, B. Ahlborn, Rev. Sci. Instrum. 44, 508 (1973).
    [CrossRef]
  31. E. Bin-nun, F. Dothan-Deutsch, Rev. Sci. Instrum. 44, 512 (1973).
    [CrossRef]
  32. T. J. Deeming, L. M. Trafton, Appl. Opt. 10, 382 (1971).
    [CrossRef] [PubMed]
  33. J. T. Trauger, F. L. Roesler, Appl. Opt. 11, 1964 (1972).
    [CrossRef] [PubMed]
  34. If field compensation is not available, one can nevertheless realize approximate compensation of planetary rotation by applying this same shear to the wavefronts. Monochromatic fringes within the planetary image diameter would then appear curved, and the situation would be generally similar to the Fabry Perot one.33
  35. Size and weight of the device tend to grow as the cube of the length; this is why a more complex, nonuniform field, switched current type was preferred for interferometers III A, B, C.11
  36. However, the RTC has also been used with a fast scanning interferometer at low resolution.20
  37. G. P. Kuiper, Commun. Lunar Planet. Lab. Univ. Ariz. 1, 83 (1962).

1974

U. Fink, H. P. Larson, R. F. Poppen, Astrophys. J. 187, 407 (1974);and Astrophys. J. 171, 291 (1972).
[CrossRef]

R. Beer, D. L. Lambert, C. Sneden, Publ. Astron. Soc. Pac. 86, 806 (1974).
[CrossRef]

C. B. Farmer, Can. J. Chem. 52, 544 (1974);Proc. CIAP Conf. (1974) (in print) (1971).
[CrossRef]

C. Amiot, G. Guelachvili, J. Mol. Spectrosc. 51, 475 (1974).
[CrossRef]

P. Connes, G. Michel, Astrophys. J. 190, L29 (1974).
[CrossRef]

W. H. Steel, Opt. Acta 21, 599 (1974).
[CrossRef]

1973

G. Guelachvili, Opt. Commun. 8, 171 (1973).
[CrossRef]

S. Mikoshiba, B. Ahlborn, Rev. Sci. Instrum. 44, 508 (1973).
[CrossRef]

E. Bin-nun, F. Dothan-Deutsch, Rev. Sci. Instrum. 44, 512 (1973).
[CrossRef]

E. Luc-Koenig, C. Morillon, J. Verges, Physica 70, 175 (1973).
[CrossRef]

J. P. Maillard, M. Combes, Th. Encrenaz, J. Lecacheux, Astron. Astrophys. 25, 219 (1973);Astron. Astrophys. 28, 457 (1973).

1972

1971

T. J. Deeming, L. M. Trafton, Appl. Opt. 10, 382 (1971).
[CrossRef] [PubMed]

J. Connes, in Aspen International Conference in Fourier Spectroscopy, AFCRL Spec. Rep. 114 (1971), p. 83.

J. Connes, H. Delouis, P. Connes, G. Guelachvili, J. P. Maillard, G. Michel, Nouv. Rev. Opt. Appl. 1, 3 (1971).
[CrossRef]

P. Connes, G. Michel, in Aspen International Conference on Fourier Spectroscopy, AFCRL Spec. Rep. 114 (1971), p. 313.

R. Beer, R. H. Norton, C. H. Seaman, Rev. Sci. Instrum. 42, 1393 (1971).
[CrossRef]

1970

P. Connes, Annu. Rev. Astron. Astrophys. 8, 209 (1970).
[CrossRef]

R. A. Schindler, Appl. Opt. 9, 301 (1970).
[CrossRef] [PubMed]

H. Delouis, in Aspen Int. Conf. on Fourier Spectrosc., AFCRL Spec. Report 114 (1970), p. 145.

1967

J. Pinard, J. Phys. 28C2, 136 (1967);Ann. Phys. 4, 147 (1967).

J. Connes, P. Connes, J. P. Maillard, J. Phys 28C2, 136 (1967).

M. Cuisenier, J. Pinard, J. Phys. 28C2, 97 (1967).

1966

1962

G. P. Kuiper, Commun. Lunar Planet. Lab. Univ. Ariz. 1, 83 (1962).

Ahlborn, B.

S. Mikoshiba, B. Ahlborn, Rev. Sci. Instrum. 44, 508 (1973).
[CrossRef]

Amiot, C.

C. Amiot, G. Guelachvili, J. Mol. Spectrosc. 51, 475 (1974).
[CrossRef]

Beer, R.

R. Beer, D. L. Lambert, C. Sneden, Publ. Astron. Soc. Pac. 86, 806 (1974).
[CrossRef]

R. Beer, R. H. Norton, C. H. Seaman, Rev. Sci. Instrum. 42, 1393 (1971).
[CrossRef]

Bin-nun, E.

E. Bin-nun, F. Dothan-Deutsch, Rev. Sci. Instrum. 44, 512 (1973).
[CrossRef]

Combes, M.

J. P. Maillard, M. Combes, Th. Encrenaz, J. Lecacheux, Astron. Astrophys. 25, 219 (1973);Astron. Astrophys. 28, 457 (1973).

Connes, J.

J. Connes, in Aspen International Conference in Fourier Spectroscopy, AFCRL Spec. Rep. 114 (1971), p. 83.

J. Connes, H. Delouis, P. Connes, G. Guelachvili, J. P. Maillard, G. Michel, Nouv. Rev. Opt. Appl. 1, 3 (1971).
[CrossRef]

J. Connes, P. Connes, J. P. Maillard, J. Phys 28C2, 136 (1967).

J. Connes, P. Connes, J. Opt. Soc. Am. 56, 896 (1966).
[CrossRef]

Connes, P.

P. Connes, G. Michel, Astrophys. J. 190, L29 (1974).
[CrossRef]

P. Connes, G. Michel, in Aspen International Conference on Fourier Spectroscopy, AFCRL Spec. Rep. 114 (1971), p. 313.

J. Connes, H. Delouis, P. Connes, G. Guelachvili, J. P. Maillard, G. Michel, Nouv. Rev. Opt. Appl. 1, 3 (1971).
[CrossRef]

P. Connes, Annu. Rev. Astron. Astrophys. 8, 209 (1970).
[CrossRef]

J. Connes, P. Connes, J. P. Maillard, J. Phys 28C2, 136 (1967).

J. Connes, P. Connes, J. Opt. Soc. Am. 56, 896 (1966).
[CrossRef]

Cuisenier, M.

M. Cuisenier, J. Pinard, J. Phys. 28C2, 97 (1967).

Deeming, T. J.

Delouis, H.

J. Connes, H. Delouis, P. Connes, G. Guelachvili, J. P. Maillard, G. Michel, Nouv. Rev. Opt. Appl. 1, 3 (1971).
[CrossRef]

H. Delouis, in Aspen Int. Conf. on Fourier Spectrosc., AFCRL Spec. Report 114 (1970), p. 145.

Dothan-Deutsch, F.

E. Bin-nun, F. Dothan-Deutsch, Rev. Sci. Instrum. 44, 512 (1973).
[CrossRef]

Encrenaz, Th.

J. P. Maillard, M. Combes, Th. Encrenaz, J. Lecacheux, Astron. Astrophys. 25, 219 (1973);Astron. Astrophys. 28, 457 (1973).

Farmer, C. B.

C. B. Farmer, Can. J. Chem. 52, 544 (1974);Proc. CIAP Conf. (1974) (in print) (1971).
[CrossRef]

Fink, U.

U. Fink, H. P. Larson, R. F. Poppen, Astrophys. J. 187, 407 (1974);and Astrophys. J. 171, 291 (1972).
[CrossRef]

Guelachvili, G.

C. Amiot, G. Guelachvili, J. Mol. Spectrosc. 51, 475 (1974).
[CrossRef]

G. Guelachvili, Opt. Commun. 8, 171 (1973).
[CrossRef]

G. Guelachvili, Nouv. Rev. Opt. Appl. 3, 317 (1972).
[CrossRef]

J. Connes, H. Delouis, P. Connes, G. Guelachvili, J. P. Maillard, G. Michel, Nouv. Rev. Opt. Appl. 1, 3 (1971).
[CrossRef]

Kuiper, G. P.

G. P. Kuiper, Commun. Lunar Planet. Lab. Univ. Ariz. 1, 83 (1962).

Lambert, D. L.

R. Beer, D. L. Lambert, C. Sneden, Publ. Astron. Soc. Pac. 86, 806 (1974).
[CrossRef]

Larson, H. P.

U. Fink, H. P. Larson, R. F. Poppen, Astrophys. J. 187, 407 (1974);and Astrophys. J. 171, 291 (1972).
[CrossRef]

Lecacheux, J.

J. P. Maillard, M. Combes, Th. Encrenaz, J. Lecacheux, Astron. Astrophys. 25, 219 (1973);Astron. Astrophys. 28, 457 (1973).

Lemaitre, G.

G. Lemaitre, Thèse, Faculte des Sciences de Marseille (1973).

Luc-Koenig, E.

E. Luc-Koenig, C. Morillon, J. Verges, Physica 70, 175 (1973).
[CrossRef]

Maillard, J. P.

J. P. Maillard, M. Combes, Th. Encrenaz, J. Lecacheux, Astron. Astrophys. 25, 219 (1973);Astron. Astrophys. 28, 457 (1973).

J. Connes, H. Delouis, P. Connes, G. Guelachvili, J. P. Maillard, G. Michel, Nouv. Rev. Opt. Appl. 1, 3 (1971).
[CrossRef]

J. Connes, P. Connes, J. P. Maillard, J. Phys 28C2, 136 (1967).

Michel, G.

P. Connes, G. Michel, Astrophys. J. 190, L29 (1974).
[CrossRef]

G. Michel, Appl. Opt. 11, 2671 (1972).
[CrossRef] [PubMed]

J. Connes, H. Delouis, P. Connes, G. Guelachvili, J. P. Maillard, G. Michel, Nouv. Rev. Opt. Appl. 1, 3 (1971).
[CrossRef]

P. Connes, G. Michel, in Aspen International Conference on Fourier Spectroscopy, AFCRL Spec. Rep. 114 (1971), p. 313.

Mikoshiba, S.

S. Mikoshiba, B. Ahlborn, Rev. Sci. Instrum. 44, 508 (1973).
[CrossRef]

Morillon, C.

E. Luc-Koenig, C. Morillon, J. Verges, Physica 70, 175 (1973).
[CrossRef]

Norton, R. H.

R. Beer, R. H. Norton, C. H. Seaman, Rev. Sci. Instrum. 42, 1393 (1971).
[CrossRef]

Pinard, J.

J. Pinard, J. Phys. 28C2, 136 (1967);Ann. Phys. 4, 147 (1967).

M. Cuisenier, J. Pinard, J. Phys. 28C2, 97 (1967).

Poppen, R. F.

U. Fink, H. P. Larson, R. F. Poppen, Astrophys. J. 187, 407 (1974);and Astrophys. J. 171, 291 (1972).
[CrossRef]

Roesler, F. L.

Schindler, R. A.

Seaman, C. H.

R. Beer, R. H. Norton, C. H. Seaman, Rev. Sci. Instrum. 42, 1393 (1971).
[CrossRef]

Sneden, C.

R. Beer, D. L. Lambert, C. Sneden, Publ. Astron. Soc. Pac. 86, 806 (1974).
[CrossRef]

Steel, W. H.

W. H. Steel, Opt. Acta 21, 599 (1974).
[CrossRef]

W. H. Steel, Interferometry (Cambridge U.P., Cambridge, England, 1967), p. 84.

Trafton, L. M.

Trauger, J. T.

Verges, J.

E. Luc-Koenig, C. Morillon, J. Verges, Physica 70, 175 (1973).
[CrossRef]

Annu. Rev. Astron. Astrophys.

P. Connes, Annu. Rev. Astron. Astrophys. 8, 209 (1970).
[CrossRef]

Appl. Opt.

Aspen Int. Conf. on Fourier Spectrosc.

H. Delouis, in Aspen Int. Conf. on Fourier Spectrosc., AFCRL Spec. Report 114 (1970), p. 145.

Aspen International Conference in Fourier Spectroscopy

J. Connes, in Aspen International Conference in Fourier Spectroscopy, AFCRL Spec. Rep. 114 (1971), p. 83.

Aspen International Conference on Fourier Spectroscopy

P. Connes, G. Michel, in Aspen International Conference on Fourier Spectroscopy, AFCRL Spec. Rep. 114 (1971), p. 313.

Astron. Astrophys.

J. P. Maillard, M. Combes, Th. Encrenaz, J. Lecacheux, Astron. Astrophys. 25, 219 (1973);Astron. Astrophys. 28, 457 (1973).

Astrophys. J.

P. Connes, G. Michel, Astrophys. J. 190, L29 (1974).
[CrossRef]

U. Fink, H. P. Larson, R. F. Poppen, Astrophys. J. 187, 407 (1974);and Astrophys. J. 171, 291 (1972).
[CrossRef]

Can. J. Chem.

C. B. Farmer, Can. J. Chem. 52, 544 (1974);Proc. CIAP Conf. (1974) (in print) (1971).
[CrossRef]

Commun. Lunar Planet. Lab. Univ. Ariz.

G. P. Kuiper, Commun. Lunar Planet. Lab. Univ. Ariz. 1, 83 (1962).

J. Mol. Spectrosc.

C. Amiot, G. Guelachvili, J. Mol. Spectrosc. 51, 475 (1974).
[CrossRef]

J. Opt. Soc. Am.

J. Phys

J. Connes, P. Connes, J. P. Maillard, J. Phys 28C2, 136 (1967).

J. Phys.

J. Pinard, J. Phys. 28C2, 136 (1967);Ann. Phys. 4, 147 (1967).

M. Cuisenier, J. Pinard, J. Phys. 28C2, 97 (1967).

Nouv. Rev. Opt. Appl.

J. Connes, H. Delouis, P. Connes, G. Guelachvili, J. P. Maillard, G. Michel, Nouv. Rev. Opt. Appl. 1, 3 (1971).
[CrossRef]

G. Guelachvili, Nouv. Rev. Opt. Appl. 3, 317 (1972).
[CrossRef]

Opt. Acta

W. H. Steel, Opt. Acta 21, 599 (1974).
[CrossRef]

Opt. Commun.

G. Guelachvili, Opt. Commun. 8, 171 (1973).
[CrossRef]

Physica

E. Luc-Koenig, C. Morillon, J. Verges, Physica 70, 175 (1973).
[CrossRef]

Publ. Astron. Soc. Pac.

R. Beer, D. L. Lambert, C. Sneden, Publ. Astron. Soc. Pac. 86, 806 (1974).
[CrossRef]

Rev. Sci. Instrum.

R. Beer, R. H. Norton, C. H. Seaman, Rev. Sci. Instrum. 42, 1393 (1971).
[CrossRef]

S. Mikoshiba, B. Ahlborn, Rev. Sci. Instrum. 44, 508 (1973).
[CrossRef]

E. Bin-nun, F. Dothan-Deutsch, Rev. Sci. Instrum. 44, 512 (1973).
[CrossRef]

Other

If field compensation is not available, one can nevertheless realize approximate compensation of planetary rotation by applying this same shear to the wavefronts. Monochromatic fringes within the planetary image diameter would then appear curved, and the situation would be generally similar to the Fabry Perot one.33

Size and weight of the device tend to grow as the cube of the length; this is why a more complex, nonuniform field, switched current type was preferred for interferometers III A, B, C.11

However, the RTC has also been used with a fast scanning interferometer at low resolution.20

W. H. Steel, Interferometry (Cambridge U.P., Cambridge, England, 1967), p. 84.

The compensation process can equally well be understood in different terms. Each cat's eye is a point-symmetrical retroreflector, i.e., all rays are returned symmetrical with respect to a particular point of the axis: the image of the MF center of curvature given by ME. Varying the curvature of MF in the manner described above means keeping this center of symmetry stationary while the cat's eye moves. Then the two emerging rays originating from a given incoming ray are coincident, a necessary condition for field compensation.

G. Lemaitre, Thèse, Faculte des Sciences de Marseille (1973).

Two recent references on flexible mirrors are Refs. 30 and 31; in the second case the design is comparable to our own. No indication of actual accuracy is given.

An astronomical interferometer comparable to our types I and II has been built independently by Beer et al.7 and has produced many astronomical results; latest reference is Ref. 8. An airborne version has been described by Schindler9 and used aboard the Concorde supersonic aircraft to record solar spectra.10 Another instrument has been built by Malbrouck (University of Liège) and set up at the Jungfraujoch Observatory, mostly for recording ir solar spectra. There is a 2-m path difference laboratory interferometer at Air Force Cambridge Research Laboratories (Pritchard, Sakai and Vanasse AFCRL Report TR-73-0223). Lastly, an astronomical interferometer has been built by Wayte for high resolution work in the visible with the Isaac Newton telescope in Herstmonceux. This brief review mentions only operating systems related to our own by similarity in type of construction and mode of operation.

RCA Corporation, Montreal, Canada.

Interferometer V uses silicon detectors with builtin preamplifiers instead.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics