Abstract

A comparison of GaAs/n+GaAs, GaAs/GaAsP, and GaAs/AlGaAs waveguide structures is presented. Their fabrication processes and their transmission properties at 10.6-μm wavelength are described. The loss due to the free carrier absorption of the substrate is analyzed. Experimentally, an attenuation rate of 2 dB/cm in a single mode (∼7 μm) GaAs/GaAsp waveguide with a maximum dimension of the order of 7 cm has been achieved.

© 1975 Optical Society of America

Full Article  |  PDF Article
More Like This
Index-profile determination of heterostructure GaAs planar waveguides from mode-angle measurements at 10.6 μm wavelength

W. W. Rigrod, J. H. McFee, M. A. Pollack, and R. A. Logan
J. Opt. Soc. Am. 65(1) 46-55 (1975)

Optical Waveguide Structures for CO2 Lasers

P. K. Cheo, J. M. Berak, W. Oshinsky, and J. L. Swindal
Appl. Opt. 12(3) 500-509 (1973)

Scattering in ZnO-Sapphire Optical Waveguides

D. J. Channin, J. M. Hammer, and M. T. Duffy
Appl. Opt. 14(4) 923-930 (1975)

References

  • View by:
  • |
  • |
  • |

  1. P. K. Cheo, J. M. Berak, W. Oshinsky, J. L. Swindal, Appl. Opt. 12, 500 (1973).
    [Crossref] [PubMed]
  2. J. W. Burd, Trans. Metall. Soc. AIME (Am. Inst. Min. Metall. Pet. Eng.) 245, 571 (1969).
  3. R. Weil, J. Appl. Phys. 40, 2856 (1969).
  4. P. K. Tien, Appl. Opt. 10, 2395 (1971).
    [Crossref] [PubMed]
  5. J. Kane, H. Osterberg, J. Opt. Soc. Am. 54, 347 (1964).
    [Crossref]
  6. P. K. Tien, R. Ulrich, J. Opt. Soc. Am. 60, 1325 (1970).
    [Crossref]
  7. W. G. Spitzer, J. M. Whelan, Phys. Rev. 114, 59 (1959).
    [Crossref]
  8. M. G. Craford, W. O. Groves, Proc. IEEE 61, 862 (1973).
    [Crossref]
  9. M. G. Milvidskii, V. B. Osvenskii, E. P. Rashevskaya, T. G. Yugova, Sov. Phys. Solid State 7, 2784 (1966).
  10. J. M. McFee, M. A. Pollack, W. W. Rigrod, R. A. Logan, “Heterostructure GaAs-AlGaAs Planar Waveguide for 10.6 μm,” in Digest of Technical Papers, IEEE-OSA Topical Meeting on Integrated Optics, New Orleans (21–24 January 1974), pp. MA 7-1–7-4.
  11. S. Kamath, “Epitaxial GaAs-(GaAl)As Layers for Integrated Optics,” in Digest of Technical Papers, IEEE-OSA Topical Meeting on Integrated Optics, New Orleans (21–24 January 1974), pp. TuA 10-1–10-3.
  12. W. S. C. Chang, IEEE Trans. Microwave Theory Tech.MTT (to be published).
  13. F. A. Blum, D. W. Vhaw, W. C. Holton, Appl. Phys. Lett. 25, 116 (1974).
    [Crossref]
  14. H. Stoll, A. Yariv, R. G. Hunsperger, G. L. Tangonan, Appl. Phys. Lett. 23, 664 (1973).
    [Crossref]

1974 (1)

F. A. Blum, D. W. Vhaw, W. C. Holton, Appl. Phys. Lett. 25, 116 (1974).
[Crossref]

1973 (3)

H. Stoll, A. Yariv, R. G. Hunsperger, G. L. Tangonan, Appl. Phys. Lett. 23, 664 (1973).
[Crossref]

P. K. Cheo, J. M. Berak, W. Oshinsky, J. L. Swindal, Appl. Opt. 12, 500 (1973).
[Crossref] [PubMed]

M. G. Craford, W. O. Groves, Proc. IEEE 61, 862 (1973).
[Crossref]

1971 (1)

1970 (1)

1969 (2)

J. W. Burd, Trans. Metall. Soc. AIME (Am. Inst. Min. Metall. Pet. Eng.) 245, 571 (1969).

R. Weil, J. Appl. Phys. 40, 2856 (1969).

1966 (1)

M. G. Milvidskii, V. B. Osvenskii, E. P. Rashevskaya, T. G. Yugova, Sov. Phys. Solid State 7, 2784 (1966).

1964 (1)

1959 (1)

W. G. Spitzer, J. M. Whelan, Phys. Rev. 114, 59 (1959).
[Crossref]

Berak, J. M.

Blum, F. A.

F. A. Blum, D. W. Vhaw, W. C. Holton, Appl. Phys. Lett. 25, 116 (1974).
[Crossref]

Burd, J. W.

J. W. Burd, Trans. Metall. Soc. AIME (Am. Inst. Min. Metall. Pet. Eng.) 245, 571 (1969).

Chang, W. S. C.

W. S. C. Chang, IEEE Trans. Microwave Theory Tech.MTT (to be published).

Cheo, P. K.

Craford, M. G.

M. G. Craford, W. O. Groves, Proc. IEEE 61, 862 (1973).
[Crossref]

Groves, W. O.

M. G. Craford, W. O. Groves, Proc. IEEE 61, 862 (1973).
[Crossref]

Holton, W. C.

F. A. Blum, D. W. Vhaw, W. C. Holton, Appl. Phys. Lett. 25, 116 (1974).
[Crossref]

Hunsperger, R. G.

H. Stoll, A. Yariv, R. G. Hunsperger, G. L. Tangonan, Appl. Phys. Lett. 23, 664 (1973).
[Crossref]

Kamath, S.

S. Kamath, “Epitaxial GaAs-(GaAl)As Layers for Integrated Optics,” in Digest of Technical Papers, IEEE-OSA Topical Meeting on Integrated Optics, New Orleans (21–24 January 1974), pp. TuA 10-1–10-3.

Kane, J.

Logan, R. A.

J. M. McFee, M. A. Pollack, W. W. Rigrod, R. A. Logan, “Heterostructure GaAs-AlGaAs Planar Waveguide for 10.6 μm,” in Digest of Technical Papers, IEEE-OSA Topical Meeting on Integrated Optics, New Orleans (21–24 January 1974), pp. MA 7-1–7-4.

McFee, J. M.

J. M. McFee, M. A. Pollack, W. W. Rigrod, R. A. Logan, “Heterostructure GaAs-AlGaAs Planar Waveguide for 10.6 μm,” in Digest of Technical Papers, IEEE-OSA Topical Meeting on Integrated Optics, New Orleans (21–24 January 1974), pp. MA 7-1–7-4.

Milvidskii, M. G.

M. G. Milvidskii, V. B. Osvenskii, E. P. Rashevskaya, T. G. Yugova, Sov. Phys. Solid State 7, 2784 (1966).

Oshinsky, W.

Osterberg, H.

Osvenskii, V. B.

M. G. Milvidskii, V. B. Osvenskii, E. P. Rashevskaya, T. G. Yugova, Sov. Phys. Solid State 7, 2784 (1966).

Pollack, M. A.

J. M. McFee, M. A. Pollack, W. W. Rigrod, R. A. Logan, “Heterostructure GaAs-AlGaAs Planar Waveguide for 10.6 μm,” in Digest of Technical Papers, IEEE-OSA Topical Meeting on Integrated Optics, New Orleans (21–24 January 1974), pp. MA 7-1–7-4.

Rashevskaya, E. P.

M. G. Milvidskii, V. B. Osvenskii, E. P. Rashevskaya, T. G. Yugova, Sov. Phys. Solid State 7, 2784 (1966).

Rigrod, W. W.

J. M. McFee, M. A. Pollack, W. W. Rigrod, R. A. Logan, “Heterostructure GaAs-AlGaAs Planar Waveguide for 10.6 μm,” in Digest of Technical Papers, IEEE-OSA Topical Meeting on Integrated Optics, New Orleans (21–24 January 1974), pp. MA 7-1–7-4.

Spitzer, W. G.

W. G. Spitzer, J. M. Whelan, Phys. Rev. 114, 59 (1959).
[Crossref]

Stoll, H.

H. Stoll, A. Yariv, R. G. Hunsperger, G. L. Tangonan, Appl. Phys. Lett. 23, 664 (1973).
[Crossref]

Swindal, J. L.

Tangonan, G. L.

H. Stoll, A. Yariv, R. G. Hunsperger, G. L. Tangonan, Appl. Phys. Lett. 23, 664 (1973).
[Crossref]

Tien, P. K.

Ulrich, R.

Vhaw, D. W.

F. A. Blum, D. W. Vhaw, W. C. Holton, Appl. Phys. Lett. 25, 116 (1974).
[Crossref]

Weil, R.

R. Weil, J. Appl. Phys. 40, 2856 (1969).

Whelan, J. M.

W. G. Spitzer, J. M. Whelan, Phys. Rev. 114, 59 (1959).
[Crossref]

Yariv, A.

H. Stoll, A. Yariv, R. G. Hunsperger, G. L. Tangonan, Appl. Phys. Lett. 23, 664 (1973).
[Crossref]

Yugova, T. G.

M. G. Milvidskii, V. B. Osvenskii, E. P. Rashevskaya, T. G. Yugova, Sov. Phys. Solid State 7, 2784 (1966).

Appl. Opt. (2)

Appl. Phys. Lett. (2)

F. A. Blum, D. W. Vhaw, W. C. Holton, Appl. Phys. Lett. 25, 116 (1974).
[Crossref]

H. Stoll, A. Yariv, R. G. Hunsperger, G. L. Tangonan, Appl. Phys. Lett. 23, 664 (1973).
[Crossref]

J. Appl. Phys. (1)

R. Weil, J. Appl. Phys. 40, 2856 (1969).

J. Opt. Soc. Am. (2)

Phys. Rev. (1)

W. G. Spitzer, J. M. Whelan, Phys. Rev. 114, 59 (1959).
[Crossref]

Proc. IEEE (1)

M. G. Craford, W. O. Groves, Proc. IEEE 61, 862 (1973).
[Crossref]

Sov. Phys. Solid State (1)

M. G. Milvidskii, V. B. Osvenskii, E. P. Rashevskaya, T. G. Yugova, Sov. Phys. Solid State 7, 2784 (1966).

Trans. Metall. Soc. AIME (1)

J. W. Burd, Trans. Metall. Soc. AIME (Am. Inst. Min. Metall. Pet. Eng.) 245, 571 (1969).

Other (3)

J. M. McFee, M. A. Pollack, W. W. Rigrod, R. A. Logan, “Heterostructure GaAs-AlGaAs Planar Waveguide for 10.6 μm,” in Digest of Technical Papers, IEEE-OSA Topical Meeting on Integrated Optics, New Orleans (21–24 January 1974), pp. MA 7-1–7-4.

S. Kamath, “Epitaxial GaAs-(GaAl)As Layers for Integrated Optics,” in Digest of Technical Papers, IEEE-OSA Topical Meeting on Integrated Optics, New Orleans (21–24 January 1974), pp. TuA 10-1–10-3.

W. S. C. Chang, IEEE Trans. Microwave Theory Tech.MTT (to be published).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Schematic diagram of vertical vapor phase epitaxial reactor. The PH3 gas is turned off when growing pure GaAs films and on for GaAsP films.
Fig. 2
Fig. 2 Typical epitaxial wafer size of 7 cm × 5 cm. The reflection of the camera is visible on the wafer surface.
Fig. 3
Fig. 3 The carrier concentration profile of the GaAs/n+GaAs waveguide structure. The film is 17.4 μm thick, and the GaAs substrate is doped with Si to 2 × 1018-cm−3 carrier concentration.
Fig. 4
Fig. 4 The loss ratio as a function of the film thickness for the GaAs/n+GaAs waveguide structure. The substrate has a carrier concentration of 2 × 1018 cm−3. The refractive indices are n0 = 2.76, n1 = 3.275, and n0= 1.0 at λ = 10.6 μm.
Fig. 5
Fig. 5 The attenuation rate as a function of the film thickness for the GaAs/n+GaAs waveguide structure. The dashed lines are an attempt to join the experimental points to give a general assessment. A bulk loss of 200 cm−1 for the substrate (N ∼ 2 × 1018 cm−3) is assumed in the theoretical curves (solid lines).
Fig. 6
Fig. 6 The geometry of GaAs/GaAsP waveguide. The refractive indices are n0 = 3.12, n1 = 3.275, and n2 = 1.0 at λ = 10.6 μm.
Fig. 7
Fig. 7 Surface alloy uniformity of GaAsP. Composition at five points showing degree of homogeneity.
Fig. 8
Fig. 8 The attenuation rate and the loss ratio as a function of the film thickness for the GaAs/GaAsP waveguide structure. The crosses are for the TE0 mode, and the circles are for the TE1 mode. The solid curves are theoretical. A bulk loss of 10 dB/cm is assumed for the GaAsP substrate (N ∼ 1016 cm−3).

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

n = ( 10.7 1.53 × 10 18 N ) 1 / 2 .
α T = α N + α S + α B .
n 0 = n 0 i K e = ( r i σ ω 0 ) 1 / 2 ,
( Δ β K Δ n 0 ) = K n 0 β [ b 1 2 p 0 ( p 0 2 + b 1 2 ) W + 1 p 0 + 1 p 2 ] ,
b 1 2 = K 2 n 1 2 β 2 , p 0 2 = β 2 K 2 n 0 2 , p 2 2 = β 2 K 2 n 2 2 ,
α N = 2 β = 2 Δ β .

Metrics