Abstract

The objective of this effort was to derive suitable correlation functions for monitoring the atmosphere for specified pollutants by remote ir sensing techniques. The correlation function for a particular target pollutant is calculated by the simplex optimization method. This technique constrains the response of the gas detection system to less than some arbitrary constraint limit for background changes while optimizing system response to the target pollutant. The response to a target pollutant was 2 to 3 times greater than any background induced change over a period of 2 weeks. The technique is applicable to a wide range of spectral analytical problems and may apply to process control as well as remote sensing techniques, particularly in pollution monitoring applications.

© 1975 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Hirshfeld, Opt. Eng. 13, 15 (1974).
  2. D. Anding, “Band-Model Methods for Computing Atmospheric Slant-Path Molecular Absorption,” IRIA State-of-the-Art Report (February1967).
  3. D. Flanigan, H. DeLong, Appl. Opt. 10, 51 (1971).
    [CrossRef] [PubMed]
  4. T. S. Hermann, Appl. Spectrosc. 19, 10 (1965).
    [CrossRef]
  5. D. L. Kreider, R. G. Kullen, D. R. Ostberg, F. W. Perkins, An Introduction to Linear Analysis (Addison-Wesley, Reading, Mass., 1966).
  6. R. O. Duda, P. E. Hart, Pattern Classification and Scene Analysis (Wiley, New York, 1973).
  7. B. Noble, Applied Linear Algebra (Prentice-Hall, Englewood Cliffs, N.J., 1969).
  8. J. M. Leaman, Mach. Des. 46, 204 (1974).
  9. IPMIXD Reference Manual for the 1108 (Academic Computing Center, The University of Wisconsin, Madison1972), The Computer Sciences Statistics Center, 1210 West Dayton Street, Madison, Wis. 53706.

1974 (2)

T. Hirshfeld, Opt. Eng. 13, 15 (1974).

J. M. Leaman, Mach. Des. 46, 204 (1974).

1971 (1)

1965 (1)

Anding, D.

D. Anding, “Band-Model Methods for Computing Atmospheric Slant-Path Molecular Absorption,” IRIA State-of-the-Art Report (February1967).

DeLong, H.

Duda, R. O.

R. O. Duda, P. E. Hart, Pattern Classification and Scene Analysis (Wiley, New York, 1973).

Flanigan, D.

Hart, P. E.

R. O. Duda, P. E. Hart, Pattern Classification and Scene Analysis (Wiley, New York, 1973).

Hermann, T. S.

Hirshfeld, T.

T. Hirshfeld, Opt. Eng. 13, 15 (1974).

Kreider, D. L.

D. L. Kreider, R. G. Kullen, D. R. Ostberg, F. W. Perkins, An Introduction to Linear Analysis (Addison-Wesley, Reading, Mass., 1966).

Kullen, R. G.

D. L. Kreider, R. G. Kullen, D. R. Ostberg, F. W. Perkins, An Introduction to Linear Analysis (Addison-Wesley, Reading, Mass., 1966).

Leaman, J. M.

J. M. Leaman, Mach. Des. 46, 204 (1974).

Noble, B.

B. Noble, Applied Linear Algebra (Prentice-Hall, Englewood Cliffs, N.J., 1969).

Ostberg, D. R.

D. L. Kreider, R. G. Kullen, D. R. Ostberg, F. W. Perkins, An Introduction to Linear Analysis (Addison-Wesley, Reading, Mass., 1966).

Perkins, F. W.

D. L. Kreider, R. G. Kullen, D. R. Ostberg, F. W. Perkins, An Introduction to Linear Analysis (Addison-Wesley, Reading, Mass., 1966).

Appl. Opt. (1)

Appl. Spectrosc. (1)

Mach. Des. (1)

J. M. Leaman, Mach. Des. 46, 204 (1974).

Opt. Eng. (1)

T. Hirshfeld, Opt. Eng. 13, 15 (1974).

Other (5)

D. Anding, “Band-Model Methods for Computing Atmospheric Slant-Path Molecular Absorption,” IRIA State-of-the-Art Report (February1967).

IPMIXD Reference Manual for the 1108 (Academic Computing Center, The University of Wisconsin, Madison1972), The Computer Sciences Statistics Center, 1210 West Dayton Street, Madison, Wis. 53706.

D. L. Kreider, R. G. Kullen, D. R. Ostberg, F. W. Perkins, An Introduction to Linear Analysis (Addison-Wesley, Reading, Mass., 1966).

R. O. Duda, P. E. Hart, Pattern Classification and Scene Analysis (Wiley, New York, 1973).

B. Noble, Applied Linear Algebra (Prentice-Hall, Englewood Cliffs, N.J., 1969).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Vapor phase spectrum of dimethylmethylphosphonate (DMMP).

Fig. 2
Fig. 2

Target and background spectra. The solid line is background only, and the dotted line is background plus DMMP. Each spectrum is the result of averaging approximately 50 scans.

Fig. 3
Fig. 3

Difference between the background spectrum and background plus DMMP.

Fig. 4
Fig. 4

Selected low angle sky difference energy spectra that were used as constraints.

Fig. 5
Fig. 5

Simulated dust difference energy spectra that were used as constraints.

Fig. 6
Fig. 6

First step solution for the detection of DMMP with background constraints only.

Fig. 7
Fig. 7

Second step solution for the detection of DMMP with background constraints only.

Fig. 8
Fig. 8

Target and background spectra. The solid line is background, and the dotted line is background plus DMMP. Each spectrum is the result of averaging approximately ten scans.

Fig. 9
Fig. 9

The second step solution for DMMP detection with background and simulated dust constraints.

Tables (1)

Tables Icon

Table I Results of Dust Tests

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

W ¯ f ¯ t > 0
W ¯ f ¯ j = 0 for j = 1 to m .
W ¯ f ¯ j < e for j = 1 to m
W ¯ f ¯ t e .
W ¯ f ¯ = e .
R = W ¯ f ¯ t .
i = 1 16 C i X i ,

Metrics