Abstract

A new microscope imaging system, modulation contrast, has been devised that reveals phase gradients; the image intensity is proportional to the first derivative of the optical density in the object. The modulator, a special filter, is placed in the Fourier plane, a plane conjugate with a slit aperture. The image of the slit aperture is registered within a gray region of the modulator; on one side of the gray region is a region of low transmittance and on the other side, a region of maximum transmittance. The modulator processes opposite gradients to produce opposite intensities, creating an optical shadowing effect. The dark region may be outside the optical system when the gray region is offset to the edge of the Fourier plane, to achieve maximum resolution. Modulation contrast is directional and capable of optical sectioning, revealing details without obscuring effects of structures above and below the plane of focus. The imaging theory of microscope optics has been extended to include effects of phase gradients. Phase gradients distribute the zero order across the Fourier plane. Intensity of the gradient's image is controlled by the zero order of the gradient diffraction pattern.

© 1975 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (10)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (20)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription