Abstract

Long-path measurements of carbon monoxide in the atmosphere are described. The technique of resonance absorption was used in which the wavelength of radiation from a PbS0.82Se0.18 semiconductor diode laser was tuned into coincidence with an absorption line of CO in its fundamental band around 4.7 μm. By employing rapid frequency modulation of the laser emission to overcome atmospheric turbulence effects, it was possible to achieve a minimum detectable concentration of 5 parts per billion over a 0.61-km path. Continuous around-the-clock monitoring was also performed and permitted increases in the ambient CO level due to commuter traffic to be observed.

© 1975 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. For a tutorial discussion of these techniques, see Laser Monitoring of the Atmosphere, E. D. Hinkley, Ed. (Springer-Verlag, Heidelberg, in preparation).
  2. R. T. H. Collis, Appl. Opt. 9, 1782 (1970). See also, R. T. H. Collis, E. E. Uthe, Opto-Electron. 4, 87 (1972).
    [CrossRef] [PubMed]
  3. For state-of-the-art presentations of lidar monitoring, see abstracts of papers presented at the 1974 International Laser Radar Conference (Sixth Conference on Laser Atmospheric Studies), Sendai, Japan (3–6 September 1974).
  4. H. Inaba, T. Kobayasi, Nature 224, 170 (1969).
    [CrossRef] [PubMed]
  5. T. Kobayasi, H. Inaba, Appl. Phys. Lett. 17, 139 (1970). For review, see H. Inaba, T. Kobayasi, Opto-Electron. 4, 101 (1972).
    [CrossRef]
  6. C. M. Penney, Paper III-3 at the 1974 International Laser Radar Conference, Sendai, Japan (3–6 September 1974).
  7. M. R. Bowman, A. J. Gibson, M. C. W. Sandford, Nature 21, 456 (1969).
    [CrossRef]
  8. J. A. Gelbwachs, M. Birnbaum, A. W. Tucker, C. L. Fincher, Opto-Electron. 4, 155 (1972).
    [CrossRef]
  9. H. Kildal, R. L. Byer, Proc. IEEE 59, 1644 (1971).
    [CrossRef]
  10. E. D. Hinkley, Opto-Electron. 4, 69 (1972).
    [CrossRef]
  11. K. W. Rothe, U. Brinkmann, H. Walther, Appl. Phys. 3, 115 (1974). See also Paper VI-8 in Ref. 3 by same authors.
    [CrossRef]
  12. R. L. Byer, M. Garbuny, Appl. Opt. 12, 1496 (1973).
    [CrossRef] [PubMed]
  13. T. Henningsen, M. Garbuny, R. L. Byer, Appl. Phys. Lett. 24, 242 (1974).
    [CrossRef]
  14. W. A. McClenny, U.S. Environmental, Protection Agency, Research Triangle Park, North Carolina, private communication.
  15. E. D. Hinkley, Appl. Phys. Lett. 16, 351 (1970).
    [CrossRef]
  16. G. Herzberg, Molecular Spectra and Molecular Structure (Van Nostrand, New York, 1945), Vol. 1.
  17. K. Westberg, N. Cohen, K. W. Wilson, Science 171, 1013 (1971).
    [CrossRef] [PubMed]
  18. The closed-cycle cooler is model 21, manufactured by Cryogenic Technology, Inc., of Waltham, Massachusetts.
  19. R. T. Ku, E. D. Hinkley, J. O. Sample (in preparation).
  20. E. D. Hinkley, K. W. Nill, F. A. Blum, in Laser Spectroscopy of Atoms and MoleculesH. Walther, Ed. (Springer-Verlag, Heidelberg, in press).
  21. R. A. McClatchey, Tech. Report AFCRL-71-0370, Air Force Cambridge Research Laboratory, Bedford, Massachusetts (1July1971).
  22. R. A. McClatchey, J. E. Selby, Tech. Report AFCRL-72-0312, Air Force Cambridge Research Laboratory, Bedford, Massachusetts (23May1972).
  23. E. R. Ochs, R. S. Lawrence, ESSA Tech. Report ERL 106-WP16, Environmental Science Services Administration, Department of Commerce, Boulder, Colorado (February1969).
  24. S. H. Groves, K. W. Nill, A. J. Strauss, Appl. Phys. Lett. 25, 331 (1974).
    [CrossRef]

1974 (3)

K. W. Rothe, U. Brinkmann, H. Walther, Appl. Phys. 3, 115 (1974). See also Paper VI-8 in Ref. 3 by same authors.
[CrossRef]

T. Henningsen, M. Garbuny, R. L. Byer, Appl. Phys. Lett. 24, 242 (1974).
[CrossRef]

S. H. Groves, K. W. Nill, A. J. Strauss, Appl. Phys. Lett. 25, 331 (1974).
[CrossRef]

1973 (1)

1972 (2)

J. A. Gelbwachs, M. Birnbaum, A. W. Tucker, C. L. Fincher, Opto-Electron. 4, 155 (1972).
[CrossRef]

E. D. Hinkley, Opto-Electron. 4, 69 (1972).
[CrossRef]

1971 (2)

K. Westberg, N. Cohen, K. W. Wilson, Science 171, 1013 (1971).
[CrossRef] [PubMed]

H. Kildal, R. L. Byer, Proc. IEEE 59, 1644 (1971).
[CrossRef]

1970 (3)

R. T. H. Collis, Appl. Opt. 9, 1782 (1970). See also, R. T. H. Collis, E. E. Uthe, Opto-Electron. 4, 87 (1972).
[CrossRef] [PubMed]

T. Kobayasi, H. Inaba, Appl. Phys. Lett. 17, 139 (1970). For review, see H. Inaba, T. Kobayasi, Opto-Electron. 4, 101 (1972).
[CrossRef]

E. D. Hinkley, Appl. Phys. Lett. 16, 351 (1970).
[CrossRef]

1969 (2)

M. R. Bowman, A. J. Gibson, M. C. W. Sandford, Nature 21, 456 (1969).
[CrossRef]

H. Inaba, T. Kobayasi, Nature 224, 170 (1969).
[CrossRef] [PubMed]

Agency, Protection

W. A. McClenny, U.S. Environmental, Protection Agency, Research Triangle Park, North Carolina, private communication.

Birnbaum, M.

J. A. Gelbwachs, M. Birnbaum, A. W. Tucker, C. L. Fincher, Opto-Electron. 4, 155 (1972).
[CrossRef]

Blum, F. A.

E. D. Hinkley, K. W. Nill, F. A. Blum, in Laser Spectroscopy of Atoms and MoleculesH. Walther, Ed. (Springer-Verlag, Heidelberg, in press).

Bowman, M. R.

M. R. Bowman, A. J. Gibson, M. C. W. Sandford, Nature 21, 456 (1969).
[CrossRef]

Brinkmann, U.

K. W. Rothe, U. Brinkmann, H. Walther, Appl. Phys. 3, 115 (1974). See also Paper VI-8 in Ref. 3 by same authors.
[CrossRef]

Byer, R. L.

T. Henningsen, M. Garbuny, R. L. Byer, Appl. Phys. Lett. 24, 242 (1974).
[CrossRef]

R. L. Byer, M. Garbuny, Appl. Opt. 12, 1496 (1973).
[CrossRef] [PubMed]

H. Kildal, R. L. Byer, Proc. IEEE 59, 1644 (1971).
[CrossRef]

Cohen, N.

K. Westberg, N. Cohen, K. W. Wilson, Science 171, 1013 (1971).
[CrossRef] [PubMed]

Collis, R. T. H.

Environmental, U.S.

W. A. McClenny, U.S. Environmental, Protection Agency, Research Triangle Park, North Carolina, private communication.

Fincher, C. L.

J. A. Gelbwachs, M. Birnbaum, A. W. Tucker, C. L. Fincher, Opto-Electron. 4, 155 (1972).
[CrossRef]

Garbuny, M.

T. Henningsen, M. Garbuny, R. L. Byer, Appl. Phys. Lett. 24, 242 (1974).
[CrossRef]

R. L. Byer, M. Garbuny, Appl. Opt. 12, 1496 (1973).
[CrossRef] [PubMed]

Gelbwachs, J. A.

J. A. Gelbwachs, M. Birnbaum, A. W. Tucker, C. L. Fincher, Opto-Electron. 4, 155 (1972).
[CrossRef]

Gibson, A. J.

M. R. Bowman, A. J. Gibson, M. C. W. Sandford, Nature 21, 456 (1969).
[CrossRef]

Groves, S. H.

S. H. Groves, K. W. Nill, A. J. Strauss, Appl. Phys. Lett. 25, 331 (1974).
[CrossRef]

Henningsen, T.

T. Henningsen, M. Garbuny, R. L. Byer, Appl. Phys. Lett. 24, 242 (1974).
[CrossRef]

Herzberg, G.

G. Herzberg, Molecular Spectra and Molecular Structure (Van Nostrand, New York, 1945), Vol. 1.

Hinkley, E. D.

E. D. Hinkley, Opto-Electron. 4, 69 (1972).
[CrossRef]

E. D. Hinkley, Appl. Phys. Lett. 16, 351 (1970).
[CrossRef]

R. T. Ku, E. D. Hinkley, J. O. Sample (in preparation).

E. D. Hinkley, K. W. Nill, F. A. Blum, in Laser Spectroscopy of Atoms and MoleculesH. Walther, Ed. (Springer-Verlag, Heidelberg, in press).

Inaba, H.

T. Kobayasi, H. Inaba, Appl. Phys. Lett. 17, 139 (1970). For review, see H. Inaba, T. Kobayasi, Opto-Electron. 4, 101 (1972).
[CrossRef]

H. Inaba, T. Kobayasi, Nature 224, 170 (1969).
[CrossRef] [PubMed]

Kildal, H.

H. Kildal, R. L. Byer, Proc. IEEE 59, 1644 (1971).
[CrossRef]

Kobayasi, T.

T. Kobayasi, H. Inaba, Appl. Phys. Lett. 17, 139 (1970). For review, see H. Inaba, T. Kobayasi, Opto-Electron. 4, 101 (1972).
[CrossRef]

H. Inaba, T. Kobayasi, Nature 224, 170 (1969).
[CrossRef] [PubMed]

Ku, R. T.

R. T. Ku, E. D. Hinkley, J. O. Sample (in preparation).

Lawrence, R. S.

E. R. Ochs, R. S. Lawrence, ESSA Tech. Report ERL 106-WP16, Environmental Science Services Administration, Department of Commerce, Boulder, Colorado (February1969).

McClatchey, R. A.

R. A. McClatchey, Tech. Report AFCRL-71-0370, Air Force Cambridge Research Laboratory, Bedford, Massachusetts (1July1971).

R. A. McClatchey, J. E. Selby, Tech. Report AFCRL-72-0312, Air Force Cambridge Research Laboratory, Bedford, Massachusetts (23May1972).

McClenny, W. A.

W. A. McClenny, U.S. Environmental, Protection Agency, Research Triangle Park, North Carolina, private communication.

Nill, K. W.

S. H. Groves, K. W. Nill, A. J. Strauss, Appl. Phys. Lett. 25, 331 (1974).
[CrossRef]

E. D. Hinkley, K. W. Nill, F. A. Blum, in Laser Spectroscopy of Atoms and MoleculesH. Walther, Ed. (Springer-Verlag, Heidelberg, in press).

Ochs, E. R.

E. R. Ochs, R. S. Lawrence, ESSA Tech. Report ERL 106-WP16, Environmental Science Services Administration, Department of Commerce, Boulder, Colorado (February1969).

Penney, C. M.

C. M. Penney, Paper III-3 at the 1974 International Laser Radar Conference, Sendai, Japan (3–6 September 1974).

Rothe, K. W.

K. W. Rothe, U. Brinkmann, H. Walther, Appl. Phys. 3, 115 (1974). See also Paper VI-8 in Ref. 3 by same authors.
[CrossRef]

Sample, J. O.

R. T. Ku, E. D. Hinkley, J. O. Sample (in preparation).

Sandford, M. C. W.

M. R. Bowman, A. J. Gibson, M. C. W. Sandford, Nature 21, 456 (1969).
[CrossRef]

Selby, J. E.

R. A. McClatchey, J. E. Selby, Tech. Report AFCRL-72-0312, Air Force Cambridge Research Laboratory, Bedford, Massachusetts (23May1972).

Strauss, A. J.

S. H. Groves, K. W. Nill, A. J. Strauss, Appl. Phys. Lett. 25, 331 (1974).
[CrossRef]

Tucker, A. W.

J. A. Gelbwachs, M. Birnbaum, A. W. Tucker, C. L. Fincher, Opto-Electron. 4, 155 (1972).
[CrossRef]

Walther, H.

K. W. Rothe, U. Brinkmann, H. Walther, Appl. Phys. 3, 115 (1974). See also Paper VI-8 in Ref. 3 by same authors.
[CrossRef]

Westberg, K.

K. Westberg, N. Cohen, K. W. Wilson, Science 171, 1013 (1971).
[CrossRef] [PubMed]

Wilson, K. W.

K. Westberg, N. Cohen, K. W. Wilson, Science 171, 1013 (1971).
[CrossRef] [PubMed]

Appl. Opt. (2)

Appl. Phys. (1)

K. W. Rothe, U. Brinkmann, H. Walther, Appl. Phys. 3, 115 (1974). See also Paper VI-8 in Ref. 3 by same authors.
[CrossRef]

Appl. Phys. Lett. (4)

T. Henningsen, M. Garbuny, R. L. Byer, Appl. Phys. Lett. 24, 242 (1974).
[CrossRef]

T. Kobayasi, H. Inaba, Appl. Phys. Lett. 17, 139 (1970). For review, see H. Inaba, T. Kobayasi, Opto-Electron. 4, 101 (1972).
[CrossRef]

E. D. Hinkley, Appl. Phys. Lett. 16, 351 (1970).
[CrossRef]

S. H. Groves, K. W. Nill, A. J. Strauss, Appl. Phys. Lett. 25, 331 (1974).
[CrossRef]

Nature (2)

M. R. Bowman, A. J. Gibson, M. C. W. Sandford, Nature 21, 456 (1969).
[CrossRef]

H. Inaba, T. Kobayasi, Nature 224, 170 (1969).
[CrossRef] [PubMed]

Opto-Electron. (2)

J. A. Gelbwachs, M. Birnbaum, A. W. Tucker, C. L. Fincher, Opto-Electron. 4, 155 (1972).
[CrossRef]

E. D. Hinkley, Opto-Electron. 4, 69 (1972).
[CrossRef]

Proc. IEEE (1)

H. Kildal, R. L. Byer, Proc. IEEE 59, 1644 (1971).
[CrossRef]

Science (1)

K. Westberg, N. Cohen, K. W. Wilson, Science 171, 1013 (1971).
[CrossRef] [PubMed]

Other (11)

The closed-cycle cooler is model 21, manufactured by Cryogenic Technology, Inc., of Waltham, Massachusetts.

R. T. Ku, E. D. Hinkley, J. O. Sample (in preparation).

E. D. Hinkley, K. W. Nill, F. A. Blum, in Laser Spectroscopy of Atoms and MoleculesH. Walther, Ed. (Springer-Verlag, Heidelberg, in press).

R. A. McClatchey, Tech. Report AFCRL-71-0370, Air Force Cambridge Research Laboratory, Bedford, Massachusetts (1July1971).

R. A. McClatchey, J. E. Selby, Tech. Report AFCRL-72-0312, Air Force Cambridge Research Laboratory, Bedford, Massachusetts (23May1972).

E. R. Ochs, R. S. Lawrence, ESSA Tech. Report ERL 106-WP16, Environmental Science Services Administration, Department of Commerce, Boulder, Colorado (February1969).

W. A. McClenny, U.S. Environmental, Protection Agency, Research Triangle Park, North Carolina, private communication.

C. M. Penney, Paper III-3 at the 1974 International Laser Radar Conference, Sendai, Japan (3–6 September 1974).

For a tutorial discussion of these techniques, see Laser Monitoring of the Atmosphere, E. D. Hinkley, Ed. (Springer-Verlag, Heidelberg, in preparation).

For state-of-the-art presentations of lidar monitoring, see abstracts of papers presented at the 1974 International Laser Radar Conference (Sixth Conference on Laser Atmospheric Studies), Sendai, Japan (3–6 September 1974).

G. Herzberg, Molecular Spectra and Molecular Structure (Van Nostrand, New York, 1945), Vol. 1.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Schematic of laser and optical system for long-path monitoring of atmospheric pollutant gases.

Fig. 2
Fig. 2

Computed atmospheric transmission spectrum around 4.7 μm for 10-km path (after Refs. 21 and 22). Heavy vertical lines show locations and relative strengths of the strong CO lines in this region.

Fig. 3
Fig. 3

Diode laser scan of the CO P(5) line centered at 2123.7 cm−1 for a 1316 ppm mixture of CO:air at atmospheric pressure in a 30-cm cell. The dashed line is a Lorentzian fit using α0 = 7.1 × 10−5 cm−1/ppm and 2γ = 0.1 cm−1.

Fig. 4
Fig. 4

Diode laser scans of the CO P(7) line centered at 2115.6 cm−1 for specimens of raw automobile exhaust in a 10-cm cell. The solid lines represent data from a 1972 Chevrolet Caprice and a 1973 International Travelall; the dotted curves represent scans of pure CO in N2 at mixing ratios indicated.

Fig. 5
Fig. 5

Oscillogram of (a) long-path (0.61-km) transmission showing dip at CO P(7) line resulting from ambient level of this gas and (b) short-path comparison.

Fig. 6
Fig. 6

Pulse-to-pulse fluctuations during atmospheric transmission as repetition frequency varied as follows: (a) 17 Hz; (b) 31 Hz; (c) 63 Hz; (d) 166 Hz; (e) 325 Hz, (f) 650 Hz.

Fig. 7
Fig. 7

(a) Scans of CO P(4) line at 2127.7 cm−1 for 215-ppb calibration and for 0.61-km long-path measurement; (b) first derivative scans using 10-kHz frequency modulation of diode laser. [The small shift in (b) toward higher currents is caused by the added sinusoidal current.]

Fig. 8
Fig. 8

Laser monitoring of ambient CO over 0.61-km path using the P(4) line. Integration time was 1 sec.

Fig. 9
Fig. 9

Laser monitoring of ambient CO over 0.61-km path using the P(4) line, illustrating effects caused by intentionally adding CO to a portion of the path. Integration time was 1 sec.

Fig. 10
Fig. 10

Laser monitoring of ambient CO over 0.61-km path on two successive mornings. Around 8 a.m. on 27 May 1974 the local wind direction shifted from northerly to south easterly, carrying exhaust emissions from Route 128 into the monitoring area. The integration time was 10 sec.

Fig. 11
Fig. 11

Long-path (0.61-km) monitoring of CO over an extended period of time. The upper curve is the direct transmission signal using a 3-sec time constant. The lower curve is the CO measurement using a 10-sec time constant.

Tables (1)

Tables Icon

Table I Diode Laser Spectroscopic Data of Several Atmospheric CO Lines

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

P r = P 0 exp [ α ( ν ) C L ] exp [ β ( t ) ] ,
d P r / d ν = P 0 C L exp [ α ( ν ) C L ] exp [ β ( t ) ] d α ( ν ) / d ν .
α ( ν ) = α 0 / [ 1 + ( ν / γ ) 2 ] ,
P r / P r = ( ( 2 α 0 L ν ) / { γ 2 [ 1 + ( ν / γ ) 2 ] 2 } ) C ,

Metrics