Abstract

Lightguiding in ion-exchanged photochromic glass layers is reported. The guides were formed by ion exchange of Ag+ for Na+ or by outdiffusion of F. Guide attenuation was less than 0.2 dB/cm in many cases. The attenuation in the guide was varied over a range of Δα = 30 dB/cm by illuminating the guide with (1) uv radiation to darken the guide or (2) visible radiation to bleach the guide. Switching times were in the order of seconds.

© 1975 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. F. Tayor et al., Appl. Phys. Lett. 21, 95 (Aug.1972).
    [CrossRef]
  2. T. Izawa, H. Nakagome, Appl. Phys. Lett. 21, 584 (1972).
    [CrossRef]
  3. T. G. Giallorenzi et al., Appl. Opt. 12, 1240 (1973).
    [CrossRef] [PubMed]
  4. I. P. Kaminow, J. R. Carruthers, Appl. Phys. Lett. 22, 326 (1973).
    [CrossRef]
  5. E. M. Conwell, Appl. Phys. Lett. 23, 328 (Sept.1973).
    [CrossRef]
  6. G. K. Megla, Appl. Opt. 5, 945 (June1966).
    [CrossRef] [PubMed]
  7. H. M. Garfinkel, Appl. Opt. 7, 789 (May1968).
    [CrossRef] [PubMed]
  8. R. J. Araujo, Corning Glass Works; private communication.
  9. R. Ulrich, R. Torge, Appl. Opt. 12, 2901 (Dec.1973).
    [CrossRef] [PubMed]
  10. E. M. Conwell, Appl. Phys. Lett. 23, 328 (Sept.1973).
    [CrossRef]
  11. J. Crank, The Mathematics of Diffusion (Oxford U. P.New York, 1957).
  12. J. E. Goell, R. D. Standley, Bell Syst. Tech. J. 48, 3345 (Dec.1969).
  13. T. P. Seward, Bull. Am. Ceram. Soc. 53, 351 (Apr.1974).

1974

T. P. Seward, Bull. Am. Ceram. Soc. 53, 351 (Apr.1974).

1973

T. G. Giallorenzi et al., Appl. Opt. 12, 1240 (1973).
[CrossRef] [PubMed]

I. P. Kaminow, J. R. Carruthers, Appl. Phys. Lett. 22, 326 (1973).
[CrossRef]

E. M. Conwell, Appl. Phys. Lett. 23, 328 (Sept.1973).
[CrossRef]

R. Ulrich, R. Torge, Appl. Opt. 12, 2901 (Dec.1973).
[CrossRef] [PubMed]

E. M. Conwell, Appl. Phys. Lett. 23, 328 (Sept.1973).
[CrossRef]

1972

H. F. Tayor et al., Appl. Phys. Lett. 21, 95 (Aug.1972).
[CrossRef]

T. Izawa, H. Nakagome, Appl. Phys. Lett. 21, 584 (1972).
[CrossRef]

1969

J. E. Goell, R. D. Standley, Bell Syst. Tech. J. 48, 3345 (Dec.1969).

1968

1966

Araujo, R. J.

R. J. Araujo, Corning Glass Works; private communication.

Carruthers, J. R.

I. P. Kaminow, J. R. Carruthers, Appl. Phys. Lett. 22, 326 (1973).
[CrossRef]

Conwell, E. M.

E. M. Conwell, Appl. Phys. Lett. 23, 328 (Sept.1973).
[CrossRef]

E. M. Conwell, Appl. Phys. Lett. 23, 328 (Sept.1973).
[CrossRef]

Crank, J.

J. Crank, The Mathematics of Diffusion (Oxford U. P.New York, 1957).

Garfinkel, H. M.

Giallorenzi, T. G.

Goell, J. E.

J. E. Goell, R. D. Standley, Bell Syst. Tech. J. 48, 3345 (Dec.1969).

Izawa, T.

T. Izawa, H. Nakagome, Appl. Phys. Lett. 21, 584 (1972).
[CrossRef]

Kaminow, I. P.

I. P. Kaminow, J. R. Carruthers, Appl. Phys. Lett. 22, 326 (1973).
[CrossRef]

Megla, G. K.

Nakagome, H.

T. Izawa, H. Nakagome, Appl. Phys. Lett. 21, 584 (1972).
[CrossRef]

Seward, T. P.

T. P. Seward, Bull. Am. Ceram. Soc. 53, 351 (Apr.1974).

Standley, R. D.

J. E. Goell, R. D. Standley, Bell Syst. Tech. J. 48, 3345 (Dec.1969).

Tayor, H. F.

H. F. Tayor et al., Appl. Phys. Lett. 21, 95 (Aug.1972).
[CrossRef]

Torge, R.

Ulrich, R.

Appl. Opt.

Appl. Phys. Lett.

E. M. Conwell, Appl. Phys. Lett. 23, 328 (Sept.1973).
[CrossRef]

I. P. Kaminow, J. R. Carruthers, Appl. Phys. Lett. 22, 326 (1973).
[CrossRef]

E. M. Conwell, Appl. Phys. Lett. 23, 328 (Sept.1973).
[CrossRef]

H. F. Tayor et al., Appl. Phys. Lett. 21, 95 (Aug.1972).
[CrossRef]

T. Izawa, H. Nakagome, Appl. Phys. Lett. 21, 584 (1972).
[CrossRef]

Bell Syst. Tech. J.

J. E. Goell, R. D. Standley, Bell Syst. Tech. J. 48, 3345 (Dec.1969).

Bull. Am. Ceram. Soc.

T. P. Seward, Bull. Am. Ceram. Soc. 53, 351 (Apr.1974).

Other

J. Crank, The Mathematics of Diffusion (Oxford U. P.New York, 1957).

R. J. Araujo, Corning Glass Works; private communication.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

The ion-exchanged surface of the glass. (a) Viewed under 160× magnification and polarized light. An analyzer in the viewing objective is crossed with the polarization direction of transmitted light through the nonexchanged region of the sample. The bright portion at the sample surface, therefore, represents a strain-induced birefringence. (b) An electron microprobe measurement of silver concentration as a function of distance below the surface. The glass was Ag+ ion-exchanged for 24 h at 280°C.

Fig. 2
Fig. 2

Electron microprobe measurements on sample that has been ion-exchanged 24 h at 280°C and heat-treated for 136 h at 500°C. (a) Silver concentration profile, (b) fluorine concentration. Note the change in X scale.

Fig. 3
Fig. 3

The effective guide thickness as a function of ion-exchange time. The circles represent experimentally determined thicknesses. The solid line is the equation a = (Dt)1/2 with D = 6.3 μm2/h.

Fig. 4
Fig. 4

The propagation constant β0E of a single TE mode, diffused-index-profile lightguide as a function of normalized effective thickness k0a. Base glass index is taken as 1.510, and Δn is the surface index difference of fluorine out-diffused lightguides.

Fig. 5
Fig. 5

The attenuation of a photochromic glass surface layer as a function of light wavelength. The steep attenuation rise for λ < 350 nm is due to fundamental absorption edge of silver halide. The wavelength of light used for rebleaching was λb = 647 nm, and the rebleaching power density was 1.3 W/cm2.

Fig. 6
Fig. 6

Experimental apparatus for measuring dynamic switching properties of photochromic lightguides. L, lens.

Fig. 7
Fig. 7

Oscilloscope trace of lightguide output intensity vs uv exposure time. For t < 0 the guide is in its rebleached state defining the level for relative transmission of 1.

Fig. 8
Fig. 8

Theoretical fit to the oscilloscope trace of Fig. 7. The circles represent data points taken from Fig. 7; the solid curve represents the theory in the text.

Fig. 9
Fig. 9

Oscilloscope trace of lightguide output intensity as a function of bleaching time. Time < 0 determines the maximum relative transmission of unity. At t = 0, uv, darkening exposures are made. The traces are a multiple exposure, each trace corresponding to a different darkening exposure time.

Fig. 10
Fig. 10

Theoretical fit to bleaching rate data of Fig. 9. The circles correspond to experimental data points taken from Fig. 9, the solid lines to the empirical expression in the text.

Tables (3)

Tables Icon

Table I Composition of Photochromic Base Glass

Tables Icon

Table II n(x) = n0 + Δn exp (x/a) (n0 = 1.510, λ = 0.633 μm)

Tables Icon

Table III Optical Bleaching Constants

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

n ( x ) = n s + Δ n exp ( x / a )
I ( z ) = I 0 exp ( 2 α z )
N / t = k d I d ( N d N ) ,
N = N 0 + Δ N [ 1 exp ( k d I d t ) ] .
α = α 0 + Δ α [ 1 exp ( k d I d t ) ] .
α ( t ) = α 0 + Δ α 1 exp ( k b I b t ) + Δ α 2 exp ( k b I b t ) .

Metrics