Abstract

No abstract available.

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. M. Gagliardi, S. Karp, IEEE Trans. Commun. Tech. COM-17, 208 (1969).
    [CrossRef]
  2. S. Karp, R. M. Gagliardi, IEEE Trans. Commun. Tech. COM-17, 670 (1969).
    [CrossRef]
  3. S. Karp, E. L. O’Neill, R. M. Gagliardi, Proc. IEEE 58, 1611 (1970).
    [CrossRef]
  4. M. Ross, Laser Focus 5, 32 (1969).
  5. P. J. Titterton, Appl. Opt. 13, 2034 (1974).
    [CrossRef]
  6. Using two optical polarizations is not considered here. Clearly it could double the effective number of decision intervals (and hence the data rate) for any value of M at a cost in complexity.
  7. The earlier references were either more general or more interested in relatively low data rates. Moreover, at the time of their publication it was not clear that achievable pulse widths from the most likely high data rate transmitter laser (Nd:YAG) would be limited.
  8. J. Falk, IEEE J. Quantum Electron. QE-11 (January, 1975).

1975

J. Falk, IEEE J. Quantum Electron. QE-11 (January, 1975).

1974

P. J. Titterton, Appl. Opt. 13, 2034 (1974).
[CrossRef]

1970

S. Karp, E. L. O’Neill, R. M. Gagliardi, Proc. IEEE 58, 1611 (1970).
[CrossRef]

1969

M. Ross, Laser Focus 5, 32 (1969).

R. M. Gagliardi, S. Karp, IEEE Trans. Commun. Tech. COM-17, 208 (1969).
[CrossRef]

S. Karp, R. M. Gagliardi, IEEE Trans. Commun. Tech. COM-17, 670 (1969).
[CrossRef]

Falk, J.

J. Falk, IEEE J. Quantum Electron. QE-11 (January, 1975).

Gagliardi, R. M.

S. Karp, E. L. O’Neill, R. M. Gagliardi, Proc. IEEE 58, 1611 (1970).
[CrossRef]

R. M. Gagliardi, S. Karp, IEEE Trans. Commun. Tech. COM-17, 208 (1969).
[CrossRef]

S. Karp, R. M. Gagliardi, IEEE Trans. Commun. Tech. COM-17, 670 (1969).
[CrossRef]

Karp, S.

S. Karp, E. L. O’Neill, R. M. Gagliardi, Proc. IEEE 58, 1611 (1970).
[CrossRef]

R. M. Gagliardi, S. Karp, IEEE Trans. Commun. Tech. COM-17, 208 (1969).
[CrossRef]

S. Karp, R. M. Gagliardi, IEEE Trans. Commun. Tech. COM-17, 670 (1969).
[CrossRef]

O’Neill, E. L.

S. Karp, E. L. O’Neill, R. M. Gagliardi, Proc. IEEE 58, 1611 (1970).
[CrossRef]

Ross, M.

M. Ross, Laser Focus 5, 32 (1969).

Titterton, P. J.

P. J. Titterton, Appl. Opt. 13, 2034 (1974).
[CrossRef]

Appl. Opt.

P. J. Titterton, Appl. Opt. 13, 2034 (1974).
[CrossRef]

IEEE J. Quantum Electron.

J. Falk, IEEE J. Quantum Electron. QE-11 (January, 1975).

IEEE Trans. Commun. Tech.

R. M. Gagliardi, S. Karp, IEEE Trans. Commun. Tech. COM-17, 208 (1969).
[CrossRef]

S. Karp, R. M. Gagliardi, IEEE Trans. Commun. Tech. COM-17, 670 (1969).
[CrossRef]

Laser Focus

M. Ross, Laser Focus 5, 32 (1969).

Proc. IEEE

S. Karp, E. L. O’Neill, R. M. Gagliardi, Proc. IEEE 58, 1611 (1970).
[CrossRef]

Other

Using two optical polarizations is not considered here. Clearly it could double the effective number of decision intervals (and hence the data rate) for any value of M at a cost in complexity.

The earlier references were either more general or more interested in relatively low data rates. Moreover, at the time of their publication it was not clear that achievable pulse widths from the most likely high data rate transmitter laser (Nd:YAG) would be limited.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (1)

Fig. 1
Fig. 1

Maximum achievable data rate for an M-ary communication system, with Δt = width of each time slot.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

R = ( log 2 M ) / ( M Δ t ) .

Metrics