Abstract

A wavefront error simulator has been designed and fabricated to evaluate experimentally test instrumentation for the Large Space Telescope (LST) program. The principal operating part of the simulator is an aberration generator that introduces low-order aberrations of several waves magnitude with an incremented adjustment capability of λ/100. Each aberration type can be introduced independently with any desired spatial orientation.

© 1975 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. K. E. Erickson, “Investigation, Monitoring, and Control of Large Space Telescope Performance,” National Aeronautics and Space Administration, Washington, D.C., NASA CR-11181 (1970).
  2. Itek Corporation, “Large Space Telescope Phase A Final Report, Vol. 3, Optical Telescope Assembly,” NASA TMX-64726, George Marshall Space Flight Center, Ala. (1972).
  3. L. J. Golden, R. V. Shack, P. N. Slater, “Study of an Instrument for Sensing Errors in a Telescope Wavefront,” Optical Sciences Center, Univ.of Arizona, Final Report on contract NAS8-27863 for NASA, George Marshall Space Flight Center, Ala. (1974).
  4. American Institute of Aeronautics and Astronautics, “Large Space Telescope—A New Tool for Science,” in Proceedings of the Twelfth Aerospace Sciences Meeting, Washington, D.C., 30 January–1 February,1974.
  5. M. B. Gold, Ed., Ordeals II Program Manual, Optical Design on IBM 7070-74,(Tropel, Inc., 52 West Avenue, Fairport, New York, January1965).

Erickson, K. E.

K. E. Erickson, “Investigation, Monitoring, and Control of Large Space Telescope Performance,” National Aeronautics and Space Administration, Washington, D.C., NASA CR-11181 (1970).

Golden, L. J.

L. J. Golden, R. V. Shack, P. N. Slater, “Study of an Instrument for Sensing Errors in a Telescope Wavefront,” Optical Sciences Center, Univ.of Arizona, Final Report on contract NAS8-27863 for NASA, George Marshall Space Flight Center, Ala. (1974).

Shack, R. V.

L. J. Golden, R. V. Shack, P. N. Slater, “Study of an Instrument for Sensing Errors in a Telescope Wavefront,” Optical Sciences Center, Univ.of Arizona, Final Report on contract NAS8-27863 for NASA, George Marshall Space Flight Center, Ala. (1974).

Slater, P. N.

L. J. Golden, R. V. Shack, P. N. Slater, “Study of an Instrument for Sensing Errors in a Telescope Wavefront,” Optical Sciences Center, Univ.of Arizona, Final Report on contract NAS8-27863 for NASA, George Marshall Space Flight Center, Ala. (1974).

Other (5)

K. E. Erickson, “Investigation, Monitoring, and Control of Large Space Telescope Performance,” National Aeronautics and Space Administration, Washington, D.C., NASA CR-11181 (1970).

Itek Corporation, “Large Space Telescope Phase A Final Report, Vol. 3, Optical Telescope Assembly,” NASA TMX-64726, George Marshall Space Flight Center, Ala. (1972).

L. J. Golden, R. V. Shack, P. N. Slater, “Study of an Instrument for Sensing Errors in a Telescope Wavefront,” Optical Sciences Center, Univ.of Arizona, Final Report on contract NAS8-27863 for NASA, George Marshall Space Flight Center, Ala. (1974).

American Institute of Aeronautics and Astronautics, “Large Space Telescope—A New Tool for Science,” in Proceedings of the Twelfth Aerospace Sciences Meeting, Washington, D.C., 30 January–1 February,1974.

M. B. Gold, Ed., Ordeals II Program Manual, Optical Design on IBM 7070-74,(Tropel, Inc., 52 West Avenue, Fairport, New York, January1965).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic diagram of wavefront error simulator.

Fig. 2
Fig. 2

Schematic diagram of aberration generator, achromatic, 590 nm, 152-mm efl, f/6.

Fig. 3
Fig. 3

Third-order, fifth-order, and seventh-order spherical aberration as a function of meniscus position.

Fig. 4
Fig. 4

Back focal position (BFP) as a function of meniscus position.

Fig. 5
Fig. 5

Aberration generator effective focal length (GEFL) as a function of meniscus position.

Tables (2)

Tables Icon

Table I Design Coefficients for Doublet (Field Angle 1.5°)

Tables Icon

Table II Design Coefficients for Astigmatism Generator (Plate Tilt 15°)

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

OPD doublet = ½ CMA 3 r 3 cos ϕ [ U ] ¼ AST 3 ( cos 2 ϕ + 1 ) r 2 U 2 ,
OPD astigmatism = ¼ AST 3 ( cos 2 ϕ + 1 ) r 2 U 2 .
OPD spherical = 1 8 SA 3 r 4 1 12 SA5 r 6 1 16 SA7 r 8 .
SA 3 = ( 2.4683572 × 10 7 ) x 3 ( 5.4403322 × 10 5 ) x 2 + ( 3.9624001 × 10 3 ) x 0.092684628 , SA5 = ( 5.4406814 × 10 8 ) x 3 ( 1.0583634 × 10 5 ) x 2 + ( 7.0274608 × 10 4 ) x 0.014209098 , SA7 = ( 7.9182015 × 10 9 ) x 3 ( 1.4642964 × 10 6 ) x 2 + ( 9.3790299 × 10 5 ) x 1.9275608 × 10 3 , BFP = ( 3.9558132 × 10 5 ) x 3 ( 8.0375794 × 10 4 ) x 2 + 0.30452283 x + 108.12638 , GEFL = ( 3.8922327 × 10 5 ) x 3 + ( 3.9824714 × 10 4 ) x 2 + 0.6562412 x + 118.61591 .
OPD total = OPD pinhole + OPD doublet + OPD plates + OPD meniscus + OPD relay .
OPD pinhole = ( h / GEFL ) β r cos ( ϕ α ) = ( 12.7 / GEFL ) β r cos ( ϕ α ) .
β = ( GEFL ) ( x 2 + y 2 ) 1 / 2 / CLEFL = ( GEFL ) [ ( AX AXO ) 2 + ( AY AYO ) 2 ] 1 / 2 / CLEFL α = arctan ( x / y ) = arctan [ ( AX AXO ) / ( AY AYO ) ] .
h = [ ( SEFL ) ( R 1 EFL ) / ( GEFL ) ( R 2 EFL ) ] h .
r = ( x 2 + y 2 ) 1 / 2 / h = [ ( PX PXO ) 2 + ( PY PYO ) 2 ] 1 / 2 / h , ϕ = arctan ( x / y ) = arctan [ ( PX PXO ) / ( PY PYO ) ] ,
OPD doublet = ½ CMA 3 r 3 U cos θ = ½ CMA 3 r 3 ( U x cos ϕ + u y sin ϕ ) = ½ CMA 3 r 3 ( 1 / 0.040 ) [ ( GXO GX ) cos ϕ + ( GY GYO ) sin ϕ ] ,
OPD plates = ½ AST 3 ω 2 r 2 cos 2 θ = ½ AST 3 [ 2 ( BZ BZO ) / 15 ] 2 r 2 cos 2 [ ϕ ( RZ RZO ) ] ,
OPD meniscus = h 2 2 Q 2 δ z r 2 1 8 SA 3 r 4 1 12 SA 5 r 6 1 16 SA 7 r 8 = ( 12.7 ) 2 2 ( GEFL ) 2 ( BFP BFPO ) r 2 1 8 SA 3 r 4 1 12 SA 5 r 6 1 16 SA 7 r 8 ,
OPD relay = ( h 2 / 2 Q 2 ) δ R r 2 = [ ( 12.7 ) 2 / 2 ( GEFL ) 2 ] ( DZO DZ ) r 2 ,
spherical aberration ± λ / 130 ; astigmatism ± OPD astigmatism / 25 ; coma ± λ / 200 ; defocus ± λ / 130 .

Metrics