Abstract

An analysis is performed to determine the accuracy with which an ac heterodyne lateral shear interferometer can measure wavefront aberrations if a white light extended source is used with the interferometer, and shot noise is the predominate noise source. The analysis shows that for uniform circular or square sources larger than a derived minimum size, the wavefront measurement accuracy depends only upon the radiance of the source and not upon the angular subtense of the source. For a 1-msec integration time, a 25-cm2 collecting area, and a source radiance of 10 W/m2-sr the rms wavefront error is approximately 1/30 wave, assuming the signal is shot noise limited. It is shown that for both uniform circular and square sources an optimum shear distance is approximately ½ the aperture diameter required to resolve the light source. Comments are made on the optimum shear for nonuniform radiance distributions.

© 1975 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (1)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (39)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription