Abstract

It is shown that the thermal distribution of rotational states within a molecular absorption band of a gas can be probed by means of lidar differential absorption to obtain measurements of the gas temperature. A technique for exploiting this is described; and preliminary calculations indicate that, although relatively weak absorptions are involved, sensitivities should be sufficient for profile measurements of temperature in the atmosphere.

© 1975 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Hirono, O. Uchino, Memoirs of the Faculty of Science Kyushu Univ., Ser. B, 4, No. 4 (1972).
  2. J. Cooney, J. Appl. Meteorol. 11, 108 (1972).
    [Crossref]
  3. J. A. Salzmann, W. J. Masica, T. A. Coney, Instrum. Control Syst. 45, 67 (May1972).
  4. R. M. Schotland, “Some Aspects of Remote Atmospheric Sensing by Laser Radar,” in Atmospheric Exploration by Remote Probes, 11, Proceedings of the Scientific Meeting of the Panel on Remote Atmospheric Probing (National Academy of Science, Washington, D.C., 1968), p. 179.
  5. J. B. Mason, “Detection of Atmospheric Oxygen Using a Tuned Ruby Laser,” ECOM-5199, Atmospheric Sciences Laboratory, U.S. Army Electronics Command, White Sands Missile Range, N.M. (1968), AD 677 389.
  6. D. L. Dobbins, A. H. LaGrone, Radio Sci. 4, 407 (1969).
    [Crossref]
  7. B. R. Clemesha, G. S. Kent, R. W. H. Wright, J. Appl. Meteorol. 6, 386 (1967).
    [Crossref]
  8. S. A. Ahmed, Appl. Opt. 12, 901 (1973).
    [Crossref] [PubMed]
  9. G. Herzberg, Molecular Spectra and Molecular Structure, Van Nostrand, Princeton, 1950), Vol. 1, Chaps. 1 and 3.
  10. We have replaced the term (2J + 1) by (J + 1) in front of the exponential factor. The difference here is due to the Σ − Σ transition band which we are considering (see Ref. 9, p. 125).
  11. H. D. Babcock, L. Herzberg, Astrophys. J. 108, 167 (1948).
    [Crossref]
  12. R. K. Long, private communication.See also R. K. Long, “Atmospheric Absorption Near 6940 Å,” Tech. Rept. 2384-5, Air Force Avionics Laboratory, Wright Patterson AFB, Ohio (1968).

1973 (1)

1972 (3)

M. Hirono, O. Uchino, Memoirs of the Faculty of Science Kyushu Univ., Ser. B, 4, No. 4 (1972).

J. Cooney, J. Appl. Meteorol. 11, 108 (1972).
[Crossref]

J. A. Salzmann, W. J. Masica, T. A. Coney, Instrum. Control Syst. 45, 67 (May1972).

1969 (1)

D. L. Dobbins, A. H. LaGrone, Radio Sci. 4, 407 (1969).
[Crossref]

1967 (1)

B. R. Clemesha, G. S. Kent, R. W. H. Wright, J. Appl. Meteorol. 6, 386 (1967).
[Crossref]

1948 (1)

H. D. Babcock, L. Herzberg, Astrophys. J. 108, 167 (1948).
[Crossref]

Ahmed, S. A.

Babcock, H. D.

H. D. Babcock, L. Herzberg, Astrophys. J. 108, 167 (1948).
[Crossref]

Clemesha, B. R.

B. R. Clemesha, G. S. Kent, R. W. H. Wright, J. Appl. Meteorol. 6, 386 (1967).
[Crossref]

Coney, T. A.

J. A. Salzmann, W. J. Masica, T. A. Coney, Instrum. Control Syst. 45, 67 (May1972).

Cooney, J.

J. Cooney, J. Appl. Meteorol. 11, 108 (1972).
[Crossref]

Dobbins, D. L.

D. L. Dobbins, A. H. LaGrone, Radio Sci. 4, 407 (1969).
[Crossref]

Herzberg, G.

G. Herzberg, Molecular Spectra and Molecular Structure, Van Nostrand, Princeton, 1950), Vol. 1, Chaps. 1 and 3.

Herzberg, L.

H. D. Babcock, L. Herzberg, Astrophys. J. 108, 167 (1948).
[Crossref]

Hirono, M.

M. Hirono, O. Uchino, Memoirs of the Faculty of Science Kyushu Univ., Ser. B, 4, No. 4 (1972).

Kent, G. S.

B. R. Clemesha, G. S. Kent, R. W. H. Wright, J. Appl. Meteorol. 6, 386 (1967).
[Crossref]

LaGrone, A. H.

D. L. Dobbins, A. H. LaGrone, Radio Sci. 4, 407 (1969).
[Crossref]

Long, R. K.

R. K. Long, private communication.See also R. K. Long, “Atmospheric Absorption Near 6940 Å,” Tech. Rept. 2384-5, Air Force Avionics Laboratory, Wright Patterson AFB, Ohio (1968).

Masica, W. J.

J. A. Salzmann, W. J. Masica, T. A. Coney, Instrum. Control Syst. 45, 67 (May1972).

Mason, J. B.

J. B. Mason, “Detection of Atmospheric Oxygen Using a Tuned Ruby Laser,” ECOM-5199, Atmospheric Sciences Laboratory, U.S. Army Electronics Command, White Sands Missile Range, N.M. (1968), AD 677 389.

Salzmann, J. A.

J. A. Salzmann, W. J. Masica, T. A. Coney, Instrum. Control Syst. 45, 67 (May1972).

Schotland, R. M.

R. M. Schotland, “Some Aspects of Remote Atmospheric Sensing by Laser Radar,” in Atmospheric Exploration by Remote Probes, 11, Proceedings of the Scientific Meeting of the Panel on Remote Atmospheric Probing (National Academy of Science, Washington, D.C., 1968), p. 179.

Uchino, O.

M. Hirono, O. Uchino, Memoirs of the Faculty of Science Kyushu Univ., Ser. B, 4, No. 4 (1972).

Wright, R. W. H.

B. R. Clemesha, G. S. Kent, R. W. H. Wright, J. Appl. Meteorol. 6, 386 (1967).
[Crossref]

Appl. Opt. (1)

Astrophys. J. (1)

H. D. Babcock, L. Herzberg, Astrophys. J. 108, 167 (1948).
[Crossref]

Instrum. Control Syst. (1)

J. A. Salzmann, W. J. Masica, T. A. Coney, Instrum. Control Syst. 45, 67 (May1972).

J. Appl. Meteorol. (2)

J. Cooney, J. Appl. Meteorol. 11, 108 (1972).
[Crossref]

B. R. Clemesha, G. S. Kent, R. W. H. Wright, J. Appl. Meteorol. 6, 386 (1967).
[Crossref]

Memoirs of the Faculty of Science Kyushu Univ., Ser. B (1)

M. Hirono, O. Uchino, Memoirs of the Faculty of Science Kyushu Univ., Ser. B, 4, No. 4 (1972).

Radio Sci. (1)

D. L. Dobbins, A. H. LaGrone, Radio Sci. 4, 407 (1969).
[Crossref]

Other (5)

G. Herzberg, Molecular Spectra and Molecular Structure, Van Nostrand, Princeton, 1950), Vol. 1, Chaps. 1 and 3.

We have replaced the term (2J + 1) by (J + 1) in front of the exponential factor. The difference here is due to the Σ − Σ transition band which we are considering (see Ref. 9, p. 125).

R. M. Schotland, “Some Aspects of Remote Atmospheric Sensing by Laser Radar,” in Atmospheric Exploration by Remote Probes, 11, Proceedings of the Scientific Meeting of the Panel on Remote Atmospheric Probing (National Academy of Science, Washington, D.C., 1968), p. 179.

J. B. Mason, “Detection of Atmospheric Oxygen Using a Tuned Ruby Laser,” ECOM-5199, Atmospheric Sciences Laboratory, U.S. Army Electronics Command, White Sands Missile Range, N.M. (1968), AD 677 389.

R. K. Long, private communication.See also R. K. Long, “Atmospheric Absorption Near 6940 Å,” Tech. Rept. 2384-5, Air Force Avionics Laboratory, Wright Patterson AFB, Ohio (1968).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (1)

Fig. 1
Fig. 1

Calculated absorption cross sections, σJ, at line center for the lines in the P branch of the 1–0 band of the O2 molecule (magnetic dipole) for the 210–290 K temperature range. In fact, values exist only at odd integral values of J. Points are connected for clarity.

Tables (1)

Tables Icon

Table I Temperature Values: a Comparison

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

P ( r , λ ) = P ( r o ) × G ( r ) × S ( r , λ ) × τ 2 ( r , λ ) ,
N ( r ) = [ 1 / 2 σ ( λ 1 ) ] × [ P ( r , λ 1 ) / P ( r , λ 2 ) ] d / d r [ P ( r , λ 2 ) / P ( r , λ 1 ) ] ,
γ ( ν J max ) = B J N J h ν J max / π c δ ν J ,
σ ( ν ) = γ ( ν ) / N ,
σ ( ν J max ) = ( N J / N ) ( B J h ν J max / π c δ ν J ) .
N J / N = ( 2 B o h c / k T ) ( 2 J + 1 ) exp [ ( B o h c / k T ) J ( J + 1 ) ] ,
δ ν = δ ν o ( P T o / P o T ) ,
σ J 1 / σ J 2 ,
σ J 1 / σ J 2 = [ ( 2 J 1 + 1 ) / ( 2 J 2 + 1 ) ] ( ν J 1 δ ν J 2 / ν J 2 δ ν J 1 ) exp { B o h c [ J 1 ( J 1 + 1 ) J 2 ( J 2 + 1 ) ] / k T }
σ J 1 / σ J 2 = ( P J 1 / P J 2 ) [ d / d r ( P / P J 1 ) / d / d r ( P / P J 2 ) ] ,
T = A 2 / { ln P 1 ln P 2 + ln A 1 + ln [ d / d r ( P / P 1 ) ] ln [ d / d r ( P / P 2 ) ] } ,
T = 472 / { ln 31 P 3 ln 7 P 15 + ln [ d / d r ( P / P 3 ) ] ln [ d / d r ( P / P 15 ) ] } .
S / N = ( i s / 2 e Δ f ) 1 2 ,

Metrics