Abstract

The intensity of the Hg 2573-Å radiation from Hg + Ar discharges was measured as an independent function of mercury pressure (0.2–50 mTorr), ac current (50–2100 mA) and tube radius (0.79 cm and 1.27 cm) at a constant Ar pressure of ~4 Torr. For various constant mercury pressures, the Hg 2537-Å intensity initially rises linearly with increasing current, but then tends to bend over and approach an asymptotic limit. The nonlinear, asymptotic behavior is due to electron deexcitation of the Hg 63P1 state at the higher currents in the presence of Hg 2537-Å self-absorption. The Hg 2537-Å intensity was also measured as a function of mercury pressure at various constant currents. The intensity rises to a peak (which defines an optimum Hg pressure) and then decreases with further increase in mercury pressure due to the combination of self-absorption and electron deexcitation. For high ac currents, the optimum Hg pressure is independent of current but varies inversely with the tube diameter. All this behavior is relevant to the problem of obtaining high efficiency from fluorescent lamps at high powers.

© 1974 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. F. Waymouth, Electric Discharge Lamps (MIT Press, Cambridge, Mass., 1971), Chapters 2 and 5.
  2. Illuminating Engineering Society, IES Lighting Handbook (Illuminating Engineering Society, New York, 1962).
  3. W. Elenbaas, Fluorescent Lamps (Macmillan, London, 1971).
  4. E. F. Lowry, Illum. Eng. 43, 141 (1948).
    [PubMed]
  5. Ref. 1, pp. 17, 34–36.
  6. Ref. 1, pp. 14, 17.
  7. Ref. 1, Chap. 3.
  8. Ref. 1, pp. 63–67.
  9. Ref. 1, Chap. 4.
  10. Ref. 2, p. 8–54.
  11. E. F. Lowry, W. S. Frohock, G. A. Meyers, Illum. Eng. 41, 859 (1946).
  12. Ref. 1, pp. 24, 139–141.
  13. Ref. 3, p. 26.
  14. C. Jerome, Illum. Eng. 51, 205 (1956).
  15. H. W. Melville, Trans. Faraday Soc. 32, 1525 (1936).
    [CrossRef]
  16. B. T. Barnes, J. Appl. Phys. 31, 852 (1960).
    [CrossRef]
  17. M. Koedam, A. A. Kruithof, Physica 28, 80 (1962).
    [CrossRef]
  18. M. Koedam, A. A. Kruithof, J. Riemens, Physica 29, 565 (1963).
    [CrossRef]
  19. P. J. Underwood, C. E. Beck, Illum. Eng. 55, 47 (1960).
  20. J. W. Marden, N. C. Beese, G. Meister, Trans. Illum. Eng. Soc. 34, 55 (1939).
  21. T. B. Read, Brit. J. Appl. Phys. 15, 837 (1964).
    [CrossRef]
  22. W. C. Gungle, J. F. Waymouth, H. H. Homer, Illum. Eng. 52, 262 (1957).
  23. P. D. Johnson, J. Opt. Soc. Am. 61, 1451 (1971).
    [CrossRef]
  24. J. C. Forbes, R. J. Diefenthaler, Illum. Eng. 41, 872 (1946).
    [PubMed]
  25. R. N. Thayer, B. T. Barnes, J. Opt. Soc. Am. 29, 131 (1939).
    [CrossRef]
  26. J. W. Marden, N. C. Beese, G. Meister, J. Opt. Soc. Am. 30, 184 (1940).
    [CrossRef]
  27. C. Kenty, J. Appl. Phys. 21, 1309 (1950).
    [CrossRef]
  28. Ref. 1, pp. 24–26, 29–38.
  29. J. F. Waymouth, F. Bitter, J. Appl. Phys. 27, 122 (1956).
    [CrossRef]
  30. J. F. Waymouth, F. Bitter, E. F. Lowry, Illum. Eng. 52, 257 (1957).
  31. T. J. Hammond, C. F. Gallo, Appl. Opt. 10, 58 (1971). Notice in Fig. 4 that when the Hg vapor is controlled, the Hg 2537-Å intensity is prevented from decreasing at high powers, but it does tend to bend over and approach an asymptotic limit.
    [CrossRef] [PubMed]
  32. M. A. Cayless, Brit. J. Appl. Phys. 14, 863 (1963).
    [CrossRef]
  33. M. F. Hoyaux, E. G. Sucov, J. Appl. Phys. 40, 3237 (1969).
    [CrossRef]
  34. L. Vriens, J. Appl. Phys. 44, 3980 (1973).
    [CrossRef]
  35. J. Polman, J. E. Van der Werf, P. C. Drop, J. Phys. D 5, 266 (1972); and P. C. Drop, J. Polman, J. Phys. D 5, 562 (1972).
    [CrossRef]
  36. J. R. Forrest, R. N. Franklin, J. Phys. B, Series 2 2, 471 (1969).
    [CrossRef]
  37. J. R. Forrest, R. N. Franklin, Brit. J. Appl. Phys. (J. Phys. D) Series 2 1, 1357 (1968).
    [CrossRef]
  38. P. J. Walsh, G. W. Manning, D. A. Larson, J. Appl. Phys. 34, 2273 (1963).
    [CrossRef]
  39. W. Verweij, Philips Tech. Rev. 16, 1 (1961).
  40. F. A. Uvarov, V. A. Fabrikant, Opt. Spectrosc. 18, 323 (1965); Opt. Spectrosc. 18, 433 (1965); and Opt. Spectrosc. 18, 541 (1964); and Y. M. Kagan, B. Kasmaliev, Opt. Spectrosc. 24, 356 (1968); and Opt. Spectrosc. 22, 293 (1967).
  41. Ref. 31. This previous study was done with dc and the anode end was cooled. It is important to realize that there are cataphoretic phenomena involved as a complication to the data, and in addition the detailed behavior is dependent on whether the cathode or anode is cooled. This will be discussed in more detail at a later date. See also T. J. Hammond, C. F. Gallo, Appl. Opt. 11, 729 (1972).
    [CrossRef] [PubMed]
  42. A. N. Nesmeyanov, Vapour Pressure of the Elements (Academic Press, New York, 1963).
  43. Refs. 15, 17, 18, 23, 31 and Ref. 1, p. 25.
  44. Refs. 14, 19, and 21.
  45. E. Skurnick, H. Schacter, J. Appl. Phys. 43, 3393 (1972). Analogous to our situation, these authors have ascribed the quenching limitation in argon–ion lasers at high currents as due to electron deexcitation in the presence of self-absorption.
    [CrossRef]
  46. C. F. Gallo, Appl. Opt. 5, 1285 (1966); Phys. Rev. 158, 1 (1967); Appl. Opt. 9, 2711 (1970); and T. J. Hammond, C. F. Gallo, Appl. Opt. 10, 58 (1971).
    [CrossRef] [PubMed]
  47. T. Holstein, Phys. Rev. 72, 1212 (1947); and Phys. Rev. 83, 1159 (1951).
    [CrossRef]
  48. J. H. Ingold, J. Appl. Phys. 41, 94 (1970).
    [CrossRef]
  49. P. J. Walsh, Phys. Rev. 116, 511 (1959).
    [CrossRef]
  50. P. J. Walsh, Phys. Rev. 107, 338 (1957).
    [CrossRef]
  51. M. A. Weinstein, J. Appl. Phys. 33, 587 (1962); and J. Appl. Phys. 41, 480 (1970).
    [CrossRef]
  52. Several authors (Refs. 12–26) have shown that the optimum mercury pressure corresponds to a cold spot temperature around 40°C, which is in agreement with our results.
  53. P. D. Johnson, Appl. Phys. Lett. 18, 381 (1971).
    [CrossRef]
  54. P. D. Johnson, private communication.
  55. Ref. 50. See Appendix I and p. 339.
  56. Ref. 50, Eq. (2.1).
  57. T. J. Hammond, C. F. Gallo, Appl. Opt. 11, 729 (1972).
    [CrossRef] [PubMed]

1973 (1)

L. Vriens, J. Appl. Phys. 44, 3980 (1973).
[CrossRef]

1972 (4)

J. Polman, J. E. Van der Werf, P. C. Drop, J. Phys. D 5, 266 (1972); and P. C. Drop, J. Polman, J. Phys. D 5, 562 (1972).
[CrossRef]

Ref. 31. This previous study was done with dc and the anode end was cooled. It is important to realize that there are cataphoretic phenomena involved as a complication to the data, and in addition the detailed behavior is dependent on whether the cathode or anode is cooled. This will be discussed in more detail at a later date. See also T. J. Hammond, C. F. Gallo, Appl. Opt. 11, 729 (1972).
[CrossRef] [PubMed]

E. Skurnick, H. Schacter, J. Appl. Phys. 43, 3393 (1972). Analogous to our situation, these authors have ascribed the quenching limitation in argon–ion lasers at high currents as due to electron deexcitation in the presence of self-absorption.
[CrossRef]

T. J. Hammond, C. F. Gallo, Appl. Opt. 11, 729 (1972).
[CrossRef] [PubMed]

1971 (3)

1970 (1)

J. H. Ingold, J. Appl. Phys. 41, 94 (1970).
[CrossRef]

1969 (2)

M. F. Hoyaux, E. G. Sucov, J. Appl. Phys. 40, 3237 (1969).
[CrossRef]

J. R. Forrest, R. N. Franklin, J. Phys. B, Series 2 2, 471 (1969).
[CrossRef]

1968 (1)

J. R. Forrest, R. N. Franklin, Brit. J. Appl. Phys. (J. Phys. D) Series 2 1, 1357 (1968).
[CrossRef]

1966 (1)

1965 (1)

F. A. Uvarov, V. A. Fabrikant, Opt. Spectrosc. 18, 323 (1965); Opt. Spectrosc. 18, 433 (1965); and Opt. Spectrosc. 18, 541 (1964); and Y. M. Kagan, B. Kasmaliev, Opt. Spectrosc. 24, 356 (1968); and Opt. Spectrosc. 22, 293 (1967).

1964 (1)

T. B. Read, Brit. J. Appl. Phys. 15, 837 (1964).
[CrossRef]

1963 (3)

M. Koedam, A. A. Kruithof, J. Riemens, Physica 29, 565 (1963).
[CrossRef]

M. A. Cayless, Brit. J. Appl. Phys. 14, 863 (1963).
[CrossRef]

P. J. Walsh, G. W. Manning, D. A. Larson, J. Appl. Phys. 34, 2273 (1963).
[CrossRef]

1962 (2)

M. A. Weinstein, J. Appl. Phys. 33, 587 (1962); and J. Appl. Phys. 41, 480 (1970).
[CrossRef]

M. Koedam, A. A. Kruithof, Physica 28, 80 (1962).
[CrossRef]

1961 (1)

W. Verweij, Philips Tech. Rev. 16, 1 (1961).

1960 (2)

B. T. Barnes, J. Appl. Phys. 31, 852 (1960).
[CrossRef]

P. J. Underwood, C. E. Beck, Illum. Eng. 55, 47 (1960).

1959 (1)

P. J. Walsh, Phys. Rev. 116, 511 (1959).
[CrossRef]

1957 (3)

P. J. Walsh, Phys. Rev. 107, 338 (1957).
[CrossRef]

W. C. Gungle, J. F. Waymouth, H. H. Homer, Illum. Eng. 52, 262 (1957).

J. F. Waymouth, F. Bitter, E. F. Lowry, Illum. Eng. 52, 257 (1957).

1956 (2)

J. F. Waymouth, F. Bitter, J. Appl. Phys. 27, 122 (1956).
[CrossRef]

C. Jerome, Illum. Eng. 51, 205 (1956).

1950 (1)

C. Kenty, J. Appl. Phys. 21, 1309 (1950).
[CrossRef]

1948 (1)

E. F. Lowry, Illum. Eng. 43, 141 (1948).
[PubMed]

1947 (1)

T. Holstein, Phys. Rev. 72, 1212 (1947); and Phys. Rev. 83, 1159 (1951).
[CrossRef]

1946 (2)

E. F. Lowry, W. S. Frohock, G. A. Meyers, Illum. Eng. 41, 859 (1946).

J. C. Forbes, R. J. Diefenthaler, Illum. Eng. 41, 872 (1946).
[PubMed]

1940 (1)

1939 (2)

R. N. Thayer, B. T. Barnes, J. Opt. Soc. Am. 29, 131 (1939).
[CrossRef]

J. W. Marden, N. C. Beese, G. Meister, Trans. Illum. Eng. Soc. 34, 55 (1939).

1936 (1)

H. W. Melville, Trans. Faraday Soc. 32, 1525 (1936).
[CrossRef]

Barnes, B. T.

Beck, C. E.

P. J. Underwood, C. E. Beck, Illum. Eng. 55, 47 (1960).

Beese, N. C.

J. W. Marden, N. C. Beese, G. Meister, J. Opt. Soc. Am. 30, 184 (1940).
[CrossRef]

J. W. Marden, N. C. Beese, G. Meister, Trans. Illum. Eng. Soc. 34, 55 (1939).

Bitter, F.

J. F. Waymouth, F. Bitter, E. F. Lowry, Illum. Eng. 52, 257 (1957).

J. F. Waymouth, F. Bitter, J. Appl. Phys. 27, 122 (1956).
[CrossRef]

Cayless, M. A.

M. A. Cayless, Brit. J. Appl. Phys. 14, 863 (1963).
[CrossRef]

Diefenthaler, R. J.

J. C. Forbes, R. J. Diefenthaler, Illum. Eng. 41, 872 (1946).
[PubMed]

Drop, P. C.

J. Polman, J. E. Van der Werf, P. C. Drop, J. Phys. D 5, 266 (1972); and P. C. Drop, J. Polman, J. Phys. D 5, 562 (1972).
[CrossRef]

Elenbaas, W.

W. Elenbaas, Fluorescent Lamps (Macmillan, London, 1971).

Fabrikant, V. A.

F. A. Uvarov, V. A. Fabrikant, Opt. Spectrosc. 18, 323 (1965); Opt. Spectrosc. 18, 433 (1965); and Opt. Spectrosc. 18, 541 (1964); and Y. M. Kagan, B. Kasmaliev, Opt. Spectrosc. 24, 356 (1968); and Opt. Spectrosc. 22, 293 (1967).

Forbes, J. C.

J. C. Forbes, R. J. Diefenthaler, Illum. Eng. 41, 872 (1946).
[PubMed]

Forrest, J. R.

J. R. Forrest, R. N. Franklin, J. Phys. B, Series 2 2, 471 (1969).
[CrossRef]

J. R. Forrest, R. N. Franklin, Brit. J. Appl. Phys. (J. Phys. D) Series 2 1, 1357 (1968).
[CrossRef]

Franklin, R. N.

J. R. Forrest, R. N. Franklin, J. Phys. B, Series 2 2, 471 (1969).
[CrossRef]

J. R. Forrest, R. N. Franklin, Brit. J. Appl. Phys. (J. Phys. D) Series 2 1, 1357 (1968).
[CrossRef]

Frohock, W. S.

E. F. Lowry, W. S. Frohock, G. A. Meyers, Illum. Eng. 41, 859 (1946).

Gallo, C. F.

Gungle, W. C.

W. C. Gungle, J. F. Waymouth, H. H. Homer, Illum. Eng. 52, 262 (1957).

Hammond, T. J.

Holstein, T.

T. Holstein, Phys. Rev. 72, 1212 (1947); and Phys. Rev. 83, 1159 (1951).
[CrossRef]

Homer, H. H.

W. C. Gungle, J. F. Waymouth, H. H. Homer, Illum. Eng. 52, 262 (1957).

Hoyaux, M. F.

M. F. Hoyaux, E. G. Sucov, J. Appl. Phys. 40, 3237 (1969).
[CrossRef]

Ingold, J. H.

J. H. Ingold, J. Appl. Phys. 41, 94 (1970).
[CrossRef]

Jerome, C.

C. Jerome, Illum. Eng. 51, 205 (1956).

Johnson, P. D.

P. D. Johnson, Appl. Phys. Lett. 18, 381 (1971).
[CrossRef]

P. D. Johnson, J. Opt. Soc. Am. 61, 1451 (1971).
[CrossRef]

P. D. Johnson, private communication.

Kenty, C.

C. Kenty, J. Appl. Phys. 21, 1309 (1950).
[CrossRef]

Koedam, M.

M. Koedam, A. A. Kruithof, J. Riemens, Physica 29, 565 (1963).
[CrossRef]

M. Koedam, A. A. Kruithof, Physica 28, 80 (1962).
[CrossRef]

Kruithof, A. A.

M. Koedam, A. A. Kruithof, J. Riemens, Physica 29, 565 (1963).
[CrossRef]

M. Koedam, A. A. Kruithof, Physica 28, 80 (1962).
[CrossRef]

Larson, D. A.

P. J. Walsh, G. W. Manning, D. A. Larson, J. Appl. Phys. 34, 2273 (1963).
[CrossRef]

Lowry, E. F.

J. F. Waymouth, F. Bitter, E. F. Lowry, Illum. Eng. 52, 257 (1957).

E. F. Lowry, Illum. Eng. 43, 141 (1948).
[PubMed]

E. F. Lowry, W. S. Frohock, G. A. Meyers, Illum. Eng. 41, 859 (1946).

Manning, G. W.

P. J. Walsh, G. W. Manning, D. A. Larson, J. Appl. Phys. 34, 2273 (1963).
[CrossRef]

Marden, J. W.

J. W. Marden, N. C. Beese, G. Meister, J. Opt. Soc. Am. 30, 184 (1940).
[CrossRef]

J. W. Marden, N. C. Beese, G. Meister, Trans. Illum. Eng. Soc. 34, 55 (1939).

Meister, G.

J. W. Marden, N. C. Beese, G. Meister, J. Opt. Soc. Am. 30, 184 (1940).
[CrossRef]

J. W. Marden, N. C. Beese, G. Meister, Trans. Illum. Eng. Soc. 34, 55 (1939).

Melville, H. W.

H. W. Melville, Trans. Faraday Soc. 32, 1525 (1936).
[CrossRef]

Meyers, G. A.

E. F. Lowry, W. S. Frohock, G. A. Meyers, Illum. Eng. 41, 859 (1946).

Nesmeyanov, A. N.

A. N. Nesmeyanov, Vapour Pressure of the Elements (Academic Press, New York, 1963).

Polman, J.

J. Polman, J. E. Van der Werf, P. C. Drop, J. Phys. D 5, 266 (1972); and P. C. Drop, J. Polman, J. Phys. D 5, 562 (1972).
[CrossRef]

Read, T. B.

T. B. Read, Brit. J. Appl. Phys. 15, 837 (1964).
[CrossRef]

Riemens, J.

M. Koedam, A. A. Kruithof, J. Riemens, Physica 29, 565 (1963).
[CrossRef]

Schacter, H.

E. Skurnick, H. Schacter, J. Appl. Phys. 43, 3393 (1972). Analogous to our situation, these authors have ascribed the quenching limitation in argon–ion lasers at high currents as due to electron deexcitation in the presence of self-absorption.
[CrossRef]

Skurnick, E.

E. Skurnick, H. Schacter, J. Appl. Phys. 43, 3393 (1972). Analogous to our situation, these authors have ascribed the quenching limitation in argon–ion lasers at high currents as due to electron deexcitation in the presence of self-absorption.
[CrossRef]

Sucov, E. G.

M. F. Hoyaux, E. G. Sucov, J. Appl. Phys. 40, 3237 (1969).
[CrossRef]

Thayer, R. N.

Underwood, P. J.

P. J. Underwood, C. E. Beck, Illum. Eng. 55, 47 (1960).

Uvarov, F. A.

F. A. Uvarov, V. A. Fabrikant, Opt. Spectrosc. 18, 323 (1965); Opt. Spectrosc. 18, 433 (1965); and Opt. Spectrosc. 18, 541 (1964); and Y. M. Kagan, B. Kasmaliev, Opt. Spectrosc. 24, 356 (1968); and Opt. Spectrosc. 22, 293 (1967).

Van der Werf, J. E.

J. Polman, J. E. Van der Werf, P. C. Drop, J. Phys. D 5, 266 (1972); and P. C. Drop, J. Polman, J. Phys. D 5, 562 (1972).
[CrossRef]

Verweij, W.

W. Verweij, Philips Tech. Rev. 16, 1 (1961).

Vriens, L.

L. Vriens, J. Appl. Phys. 44, 3980 (1973).
[CrossRef]

Walsh, P. J.

P. J. Walsh, G. W. Manning, D. A. Larson, J. Appl. Phys. 34, 2273 (1963).
[CrossRef]

P. J. Walsh, Phys. Rev. 116, 511 (1959).
[CrossRef]

P. J. Walsh, Phys. Rev. 107, 338 (1957).
[CrossRef]

Waymouth, J. F.

J. F. Waymouth, F. Bitter, E. F. Lowry, Illum. Eng. 52, 257 (1957).

W. C. Gungle, J. F. Waymouth, H. H. Homer, Illum. Eng. 52, 262 (1957).

J. F. Waymouth, F. Bitter, J. Appl. Phys. 27, 122 (1956).
[CrossRef]

J. F. Waymouth, Electric Discharge Lamps (MIT Press, Cambridge, Mass., 1971), Chapters 2 and 5.

Weinstein, M. A.

M. A. Weinstein, J. Appl. Phys. 33, 587 (1962); and J. Appl. Phys. 41, 480 (1970).
[CrossRef]

Appl. Opt. (4)

Appl. Phys. Lett. (1)

P. D. Johnson, Appl. Phys. Lett. 18, 381 (1971).
[CrossRef]

Brit. J. Appl. Phys. (2)

M. A. Cayless, Brit. J. Appl. Phys. 14, 863 (1963).
[CrossRef]

T. B. Read, Brit. J. Appl. Phys. 15, 837 (1964).
[CrossRef]

Brit. J. Appl. Phys. (J. Phys. D) Series 2 (1)

J. R. Forrest, R. N. Franklin, Brit. J. Appl. Phys. (J. Phys. D) Series 2 1, 1357 (1968).
[CrossRef]

Illum. Eng. (7)

J. F. Waymouth, F. Bitter, E. F. Lowry, Illum. Eng. 52, 257 (1957).

J. C. Forbes, R. J. Diefenthaler, Illum. Eng. 41, 872 (1946).
[PubMed]

W. C. Gungle, J. F. Waymouth, H. H. Homer, Illum. Eng. 52, 262 (1957).

P. J. Underwood, C. E. Beck, Illum. Eng. 55, 47 (1960).

C. Jerome, Illum. Eng. 51, 205 (1956).

E. F. Lowry, Illum. Eng. 43, 141 (1948).
[PubMed]

E. F. Lowry, W. S. Frohock, G. A. Meyers, Illum. Eng. 41, 859 (1946).

J. Appl. Phys. (9)

B. T. Barnes, J. Appl. Phys. 31, 852 (1960).
[CrossRef]

C. Kenty, J. Appl. Phys. 21, 1309 (1950).
[CrossRef]

M. F. Hoyaux, E. G. Sucov, J. Appl. Phys. 40, 3237 (1969).
[CrossRef]

L. Vriens, J. Appl. Phys. 44, 3980 (1973).
[CrossRef]

J. F. Waymouth, F. Bitter, J. Appl. Phys. 27, 122 (1956).
[CrossRef]

P. J. Walsh, G. W. Manning, D. A. Larson, J. Appl. Phys. 34, 2273 (1963).
[CrossRef]

E. Skurnick, H. Schacter, J. Appl. Phys. 43, 3393 (1972). Analogous to our situation, these authors have ascribed the quenching limitation in argon–ion lasers at high currents as due to electron deexcitation in the presence of self-absorption.
[CrossRef]

J. H. Ingold, J. Appl. Phys. 41, 94 (1970).
[CrossRef]

M. A. Weinstein, J. Appl. Phys. 33, 587 (1962); and J. Appl. Phys. 41, 480 (1970).
[CrossRef]

J. Opt. Soc. Am. (3)

J. Phys. B, Series 2 (1)

J. R. Forrest, R. N. Franklin, J. Phys. B, Series 2 2, 471 (1969).
[CrossRef]

J. Phys. D (1)

J. Polman, J. E. Van der Werf, P. C. Drop, J. Phys. D 5, 266 (1972); and P. C. Drop, J. Polman, J. Phys. D 5, 562 (1972).
[CrossRef]

Opt. Spectrosc. (1)

F. A. Uvarov, V. A. Fabrikant, Opt. Spectrosc. 18, 323 (1965); Opt. Spectrosc. 18, 433 (1965); and Opt. Spectrosc. 18, 541 (1964); and Y. M. Kagan, B. Kasmaliev, Opt. Spectrosc. 24, 356 (1968); and Opt. Spectrosc. 22, 293 (1967).

Philips Tech. Rev. (1)

W. Verweij, Philips Tech. Rev. 16, 1 (1961).

Phys. Rev. (3)

T. Holstein, Phys. Rev. 72, 1212 (1947); and Phys. Rev. 83, 1159 (1951).
[CrossRef]

P. J. Walsh, Phys. Rev. 116, 511 (1959).
[CrossRef]

P. J. Walsh, Phys. Rev. 107, 338 (1957).
[CrossRef]

Physica (2)

M. Koedam, A. A. Kruithof, Physica 28, 80 (1962).
[CrossRef]

M. Koedam, A. A. Kruithof, J. Riemens, Physica 29, 565 (1963).
[CrossRef]

Trans. Faraday Soc. (1)

H. W. Melville, Trans. Faraday Soc. 32, 1525 (1936).
[CrossRef]

Trans. Illum. Eng. Soc. (1)

J. W. Marden, N. C. Beese, G. Meister, Trans. Illum. Eng. Soc. 34, 55 (1939).

Other (19)

Ref. 1, pp. 24, 139–141.

Ref. 3, p. 26.

J. F. Waymouth, Electric Discharge Lamps (MIT Press, Cambridge, Mass., 1971), Chapters 2 and 5.

Illuminating Engineering Society, IES Lighting Handbook (Illuminating Engineering Society, New York, 1962).

W. Elenbaas, Fluorescent Lamps (Macmillan, London, 1971).

Ref. 1, pp. 17, 34–36.

Ref. 1, pp. 14, 17.

Ref. 1, Chap. 3.

Ref. 1, pp. 63–67.

Ref. 1, Chap. 4.

Ref. 2, p. 8–54.

A. N. Nesmeyanov, Vapour Pressure of the Elements (Academic Press, New York, 1963).

Refs. 15, 17, 18, 23, 31 and Ref. 1, p. 25.

Refs. 14, 19, and 21.

Ref. 1, pp. 24–26, 29–38.

Several authors (Refs. 12–26) have shown that the optimum mercury pressure corresponds to a cold spot temperature around 40°C, which is in agreement with our results.

P. D. Johnson, private communication.

Ref. 50. See Appendix I and p. 339.

Ref. 50, Eq. (2.1).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

The Hg 2537-Å radiant power (I) is shown vs the ac lamp current for various mercury pressures in the 0.79-cm radius lamp.

Fig. 2
Fig. 2

The Hg 2537-Å radiant power (I) is shown vs the ac lamp current for various mercury pressures in the 1.27-cm radius lamp.

Fig. 3
Fig. 3

The Hg 2537-Å radiant power (I) vs the mercury pressure for various ac lamp currents in the 0.79-cm radius lamp is shown.

Fig. 4
Fig. 4

The Hg 2537-Å radiant power (I) vs the mercury pressure for various ac lamp currents in the 1.27-cm radius lamp is shown.

Fig. 5
Fig. 5

The Hg 2537-Å radiant power (I) vs the mercury cold spot temperature for various ac lamp currents is shown. (a) The 1.27-cm radius lamp. Notice that the optimum cold spot temperature is ~37°C. (b) The 0.79-cm lamp. Notice that the optimum cold spot temperature is ~44°C.

Fig. 6
Fig. 6

Simplified energy level diagram of mercury used as the basis of our analysis.

Fig. 7
Fig. 7

Self-absorption factor (S) vs the mercury vapor density. The figure is an interpolated abstraction from the treatment of Ingold.48

Fig. 8
Fig. 8

Simplified energy level diagram of mercury used by Waymouth and Bitter.29

Equations (16)

Equations on this page are rendered with MathJax. Learn more.

K E N e N o = K D N e N * + ( A / S ) N * .
N * = { ( K E N e N o / [ K D N e + ( A / S ) ] } .
I = N * E ( A / S ) ,
I α { ( K E N e N o ) / [ K D N e + ( A / S ) ] } ( 1 / S ) ,
S 1 + C N o 1 + x ,
S α N o ,
I α [ ( K E N o ) / ( K D S ) ] .
N P [ ( A + K D N e ) / ( C x K D N e ) ] ( 1 / 1 + x ) ,
N P [ 1 / ( C x ) ] 1 / 1 + x .
i ( K d ) i N e N * = N e N * i ( K d ) i ,
N e N * i ( K d ) i N e N * K D ,
N * = { ( C 1 N e N o ) / [ C 2 N e + C 3 ( A / S ) ] } ,
K E N e N o + = N * A + K D N e N * .
= ( N * A ) P .
( N * A ) P = ( N * A ) ( N * A ) ( 1 / S ) ,
P = 1 ( 1 / S ) .

Metrics