Abstract

Refractive index profiles resulting from the fabrication of optical waveguides by diffusion techniques are measured using a reflection interferometric technique. In Cd-diffused ZnSe waveguides, the index variations are found to be complementary error functions that closely follow the composition changes for deep (>5 μm) diffusions. Shallow (<5 μm) diffusions produce waveguides in which the index profile is a complementary error function that differs significantly from the composition profile. The relationship between composition and refractive index is determined for Cd compositions less than 10%. Refractive index profiles in commercially available diffused glass waveguides (SELFOC rod and fibers) are also described.

© 1974 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. F. Taylor, W. E. Martin, D. B. Hall, V. N. Smiley, Appl. Phys. Lett. 21, 95 (1972).
    [CrossRef]
  2. W. E. Martin, D. B. Hall, Appl. Phys. Lett. 21, 325 (1972).
    [CrossRef]
  3. W. E. Martin, J. Appl. Phys. 44, 3703 (1973).
    [CrossRef]
  4. I. P. Kaminow, J. R. Carruthers, Appl. Phys. Lett. 22, 326 (1973).
    [CrossRef]
  5. T. Uchida, M. Furukawa, I. Kitano, K. Koizumi, H. Matsumura, IEEE J. Quantum Electron. QE-6, 606 (1970).
    [CrossRef]
  6. A. D. Pearson, W. G. French, E. G. Rawson, Appl. Phys. Lett. 15, 76 (1969).
    [CrossRef]
  7. T. Izawa, H. Nakagome, Appl. Phys. Lett. 21, 584 (1972).
    [CrossRef]
  8. C. A. Burrus, W. L. Chinnock, D. Gloge, W. S. Holden, Tingye Li, R. P. Standley, D. B. Beck, Proc. IEEE 61, 148 (1973).
    [CrossRef]
  9. W. E. Martin, J. Appl. Phys. 44, 5639 (1973).
    [CrossRef]

1973

W. E. Martin, J. Appl. Phys. 44, 3703 (1973).
[CrossRef]

I. P. Kaminow, J. R. Carruthers, Appl. Phys. Lett. 22, 326 (1973).
[CrossRef]

C. A. Burrus, W. L. Chinnock, D. Gloge, W. S. Holden, Tingye Li, R. P. Standley, D. B. Beck, Proc. IEEE 61, 148 (1973).
[CrossRef]

W. E. Martin, J. Appl. Phys. 44, 5639 (1973).
[CrossRef]

1972

H. F. Taylor, W. E. Martin, D. B. Hall, V. N. Smiley, Appl. Phys. Lett. 21, 95 (1972).
[CrossRef]

W. E. Martin, D. B. Hall, Appl. Phys. Lett. 21, 325 (1972).
[CrossRef]

T. Izawa, H. Nakagome, Appl. Phys. Lett. 21, 584 (1972).
[CrossRef]

1970

T. Uchida, M. Furukawa, I. Kitano, K. Koizumi, H. Matsumura, IEEE J. Quantum Electron. QE-6, 606 (1970).
[CrossRef]

1969

A. D. Pearson, W. G. French, E. G. Rawson, Appl. Phys. Lett. 15, 76 (1969).
[CrossRef]

Beck, D. B.

C. A. Burrus, W. L. Chinnock, D. Gloge, W. S. Holden, Tingye Li, R. P. Standley, D. B. Beck, Proc. IEEE 61, 148 (1973).
[CrossRef]

Burrus, C. A.

C. A. Burrus, W. L. Chinnock, D. Gloge, W. S. Holden, Tingye Li, R. P. Standley, D. B. Beck, Proc. IEEE 61, 148 (1973).
[CrossRef]

Carruthers, J. R.

I. P. Kaminow, J. R. Carruthers, Appl. Phys. Lett. 22, 326 (1973).
[CrossRef]

Chinnock, W. L.

C. A. Burrus, W. L. Chinnock, D. Gloge, W. S. Holden, Tingye Li, R. P. Standley, D. B. Beck, Proc. IEEE 61, 148 (1973).
[CrossRef]

French, W. G.

A. D. Pearson, W. G. French, E. G. Rawson, Appl. Phys. Lett. 15, 76 (1969).
[CrossRef]

Furukawa, M.

T. Uchida, M. Furukawa, I. Kitano, K. Koizumi, H. Matsumura, IEEE J. Quantum Electron. QE-6, 606 (1970).
[CrossRef]

Gloge, D.

C. A. Burrus, W. L. Chinnock, D. Gloge, W. S. Holden, Tingye Li, R. P. Standley, D. B. Beck, Proc. IEEE 61, 148 (1973).
[CrossRef]

Hall, D. B.

H. F. Taylor, W. E. Martin, D. B. Hall, V. N. Smiley, Appl. Phys. Lett. 21, 95 (1972).
[CrossRef]

W. E. Martin, D. B. Hall, Appl. Phys. Lett. 21, 325 (1972).
[CrossRef]

Holden, W. S.

C. A. Burrus, W. L. Chinnock, D. Gloge, W. S. Holden, Tingye Li, R. P. Standley, D. B. Beck, Proc. IEEE 61, 148 (1973).
[CrossRef]

Izawa, T.

T. Izawa, H. Nakagome, Appl. Phys. Lett. 21, 584 (1972).
[CrossRef]

Kaminow, I. P.

I. P. Kaminow, J. R. Carruthers, Appl. Phys. Lett. 22, 326 (1973).
[CrossRef]

Kitano, I.

T. Uchida, M. Furukawa, I. Kitano, K. Koizumi, H. Matsumura, IEEE J. Quantum Electron. QE-6, 606 (1970).
[CrossRef]

Koizumi, K.

T. Uchida, M. Furukawa, I. Kitano, K. Koizumi, H. Matsumura, IEEE J. Quantum Electron. QE-6, 606 (1970).
[CrossRef]

Li, Tingye

C. A. Burrus, W. L. Chinnock, D. Gloge, W. S. Holden, Tingye Li, R. P. Standley, D. B. Beck, Proc. IEEE 61, 148 (1973).
[CrossRef]

Martin, W. E.

W. E. Martin, J. Appl. Phys. 44, 5639 (1973).
[CrossRef]

W. E. Martin, J. Appl. Phys. 44, 3703 (1973).
[CrossRef]

W. E. Martin, D. B. Hall, Appl. Phys. Lett. 21, 325 (1972).
[CrossRef]

H. F. Taylor, W. E. Martin, D. B. Hall, V. N. Smiley, Appl. Phys. Lett. 21, 95 (1972).
[CrossRef]

Matsumura, H.

T. Uchida, M. Furukawa, I. Kitano, K. Koizumi, H. Matsumura, IEEE J. Quantum Electron. QE-6, 606 (1970).
[CrossRef]

Nakagome, H.

T. Izawa, H. Nakagome, Appl. Phys. Lett. 21, 584 (1972).
[CrossRef]

Pearson, A. D.

A. D. Pearson, W. G. French, E. G. Rawson, Appl. Phys. Lett. 15, 76 (1969).
[CrossRef]

Rawson, E. G.

A. D. Pearson, W. G. French, E. G. Rawson, Appl. Phys. Lett. 15, 76 (1969).
[CrossRef]

Smiley, V. N.

H. F. Taylor, W. E. Martin, D. B. Hall, V. N. Smiley, Appl. Phys. Lett. 21, 95 (1972).
[CrossRef]

Standley, R. P.

C. A. Burrus, W. L. Chinnock, D. Gloge, W. S. Holden, Tingye Li, R. P. Standley, D. B. Beck, Proc. IEEE 61, 148 (1973).
[CrossRef]

Taylor, H. F.

H. F. Taylor, W. E. Martin, D. B. Hall, V. N. Smiley, Appl. Phys. Lett. 21, 95 (1972).
[CrossRef]

Uchida, T.

T. Uchida, M. Furukawa, I. Kitano, K. Koizumi, H. Matsumura, IEEE J. Quantum Electron. QE-6, 606 (1970).
[CrossRef]

Appl. Phys. Lett.

H. F. Taylor, W. E. Martin, D. B. Hall, V. N. Smiley, Appl. Phys. Lett. 21, 95 (1972).
[CrossRef]

W. E. Martin, D. B. Hall, Appl. Phys. Lett. 21, 325 (1972).
[CrossRef]

I. P. Kaminow, J. R. Carruthers, Appl. Phys. Lett. 22, 326 (1973).
[CrossRef]

A. D. Pearson, W. G. French, E. G. Rawson, Appl. Phys. Lett. 15, 76 (1969).
[CrossRef]

T. Izawa, H. Nakagome, Appl. Phys. Lett. 21, 584 (1972).
[CrossRef]

IEEE J. Quantum Electron.

T. Uchida, M. Furukawa, I. Kitano, K. Koizumi, H. Matsumura, IEEE J. Quantum Electron. QE-6, 606 (1970).
[CrossRef]

J. Appl. Phys.

W. E. Martin, J. Appl. Phys. 44, 3703 (1973).
[CrossRef]

W. E. Martin, J. Appl. Phys. 44, 5639 (1973).
[CrossRef]

Proc. IEEE

C. A. Burrus, W. L. Chinnock, D. Gloge, W. S. Holden, Tingye Li, R. P. Standley, D. B. Beck, Proc. IEEE 61, 148 (1973).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Zeiss Model I interference microscope used with transparent samples containing a refractive index gradient.

Fig. 2
Fig. 2

A cleaved sample of undiffused ZnSe showing the optical quality of the edge of the sample, 60× objective. The distance between fringes is approximately 10 μm.

Fig. 3
Fig. 3

Planar waveguide Cd-diffused ZnSe, 60× objective. The distance between fringes is approximately 11 μm. The diffusion depth is about 2 μm.

Fig. 4
Fig. 4

Interference fringes from an array of channel waveguides, 60× objective. The reference fringes are parallel to the edge of the ZnSe crystal. For quantitative measurements the reference fringes were perpendicular to the edge, as in Fig. 3. Guide dimensions are approximately 2 μm × 20 μm.

Fig. 5
Fig. 5

Refractive index and composition changes for deep Cd-diffused ZnSe planar optical waveguide. The Cd mole fraction is x, 100 x gives percent Cd, and d is the depth.

Fig. 6
Fig. 6

Refractive index and composition changes for the channel waveguides of Fig. 5. The deviation of index and composition is typical of shallow diffusions and may be due to the presence of interstitial diffusants (Cd and Se).

Fig. 7
Fig. 7

Interferogram from a slice of 1-mm diameter SELFOC lens, 10× objective.

Fig. 8
Fig. 8

Log R vs log Δn for a slice of SELFOC rod. The deviation from a strictly parabolic distribution is evident.

Fig. 9
Fig. 9

Interferogram of a slice of Corning low-loss optical fiber, 60× objective. The core is seen to taper into the cladding (the bending of the straight fringes across the center). Core diameter is approximately 100 μm.

Fig. 10
Fig. 10

Refractive index changes as a function of radius for two samples of Corning low-loss fiber. The core-cladding interface is not a step index change.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

Δ n ( x , y ) = { [ N ( x , y ) λ ] / ( 2 Δ t ) } ,
C ( d , t ) = C 0 ERFC [ d / 2 ( D t ) 1 / 2 ] ,
Δ n = ( 0.020 ± 0.002 ) x ,

Metrics