Abstract

Experiments on laser-induced thermonuclear fusion require high brightness lasers capable of producing subnanosecond pulses with total energy content of several kilojoules. Of existing laser media, Nd:glass appears to be the best choice for meeting these criteria. In this paper we discuss the problems of designing a high power Nd:glass laser system. A detailed description of an operating two-beam system producing subnanosecond pulses with a maximum energy of 350 J per beam is presented, along with an extensive description of beam diagnostic techniques. A four beam version of this system became operational on 3 April 1974 and is now producing energies in excess of a kilojoule in subnanosecond pulses.

© 1974 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Nuckolls, L. Wood, A. Thiessen, G. Zimmerman, Nature 239, 139 (1972).
    [CrossRef]
  2. M. Lubin, A. Fraas, Sci. Am. 224, No. 6, 23 (1971).
  3. R. E. Kidder. “Some Aspects of Controlled Fusion by Use of Lasers,” Proceedings Esfahan Symposium on Fundamental and Applied Laser Physics, M. S. Feld et al., Ed. (Wiley, New York, 1973).
  4. E. E. Stark, W. H. Reichelt, G. T. Schappert, T. F. Stratton, Appl. Phys. Lett. 23, 322 (1973).
    [CrossRef]
  5. K. Hohla, K. L. Kompa, Appl. Phys. Lett. 22, 77 (1973).
    [CrossRef]
  6. J. B. Gerardo, A. Wayne Johnson, IEEE J. Quantum Electron. QE-9, 748 (1973).
    [CrossRef]
  7. W. G. Wagner, H. A. Hauss, J. H. Marburger, Phys. Rev. 175, 256 (1968).
    [CrossRef]
  8. E. L. Dawes, J. H. Marburger, Phys. Rev. 179, 862 (1969).
    [CrossRef]
  9. B. R. Suydam, Los Alamos Sci. Lab. Report LA-5003-MS (1973).
  10. J. M. McMahon, in “Laser Induced Damage in Optical Materials: 1972,” National Bureau of Standards Special Publication 372 (1972) p. 100.
  11. E. S. Bliss, IEEE J. Quantum Electron. QE-8, 273 (1972).
    [CrossRef]
  12. B. R. Suydam, in “Laser Induced Damage in Optical Materials,” National Bureau of Standards Special Publication 387 (1973).
  13. M. A. Dúguay, J. W. Hansen, S. L. Shapiro, IEEE J. Quantum Electron. QE-6, 725 (1970).
    [CrossRef]
  14. N. G. Basov, O. N. Krokhin, G. V. Sklizkov, S. I. Fedotov, A. S. Shikanov, Sov. Phys. JETP 35, 109 (1973).
  15. K. Patek, Glass Lasers (London: Butterworth and Co., 1970).
  16. J. Soures, L. Goldman, M. Lubin, Appl. Opt. 12, 927 (1973).
    [CrossRef] [PubMed]
  17. K. Tomiyasu, Proc. IRE 50, 2488 (1962).
  18. J. MeMetz, Appl. Opt. 10, 1609 (1971).
    [CrossRef]
  19. S. W. Mead, R. E. Kidder, J. E. Swain, F. Rainer, J. Petruzzi, Appl. Opt. 11, 345 (1972).
    [CrossRef] [PubMed]
  20. J. M. McMahon, J. L. Emmett, J. F. Holzrichter, J. B. Trenholme, J. Quantum Electron. QE-9, 992 (1973).
    [CrossRef]
  21. M. J. Lubin, J. M. Soures, L. M. Goldman, J. Appl. Phys. 44, 347 (1973).
    [CrossRef]
  22. C. R. Jones, P. V. Avizonis, P. Sivgals, in “Damage in Laser Materials,” National Bureau of Standards Special Publication 341 (1970) p. 28.
  23. H. Welling, C. Bickart, J. Opt. Soc. Am. 56, 611 (1966).
    [CrossRef]
  24. G. D. Baldwin, E. P. Riedel, J. Appl. Phys. 38, 2726 (1967).
    [CrossRef]
  25. H. Kogelnik, Bell Syst. Tech. J. 43, 455 (1965).
  26. Jürg Steffen, Jean-Pierre Lörtsheer, G. Herziger, IEEE J. Quantum Electron. QE-8, 239 (1972).
    [CrossRef]
  27. E. Snitzer, Appl. Opt. 5, 121 (1966).
    [CrossRef] [PubMed]
  28. G. Dubé, Appl. Phys. Lett. 18, 69 (1971).
    [CrossRef]
  29. A. J. DeMaria, W. H. Glenn, M. J. Brienzae, M. E. Mack, Pros. IEEE 57, 2 (1969).
    [CrossRef]
  30. This is a camera manufactured by Electro-Photonics Ltd. of Dunmurry, N. Ireland.
  31. P. G. Kryukov, V. S. Letokhov, IEEE J. Quantum Electron. QE-8, 766 (1972).
    [CrossRef]
  32. D. von der Linde, K. F. Rodgers, IEEE J. Quan. Electron. QE-9, 960 (1973).
    [CrossRef]
  33. D. K. Duston, K. Rose, IEEE J. Quntum Electron. QE-6, 3 (1970).
  34. P. C. Magnante, IEEE J. Quantum Electron. QE-8, 440 (1972).
    [CrossRef]
  35. A. Penzkofer, W. Kaiser, Appl. Phys. Lett. 21, 427 (1972).
    [CrossRef]
  36. M. V. R. K. Murty, Appl. Opt. 3, 531 (1964).
    [CrossRef]
  37. J. Soures, L. Goldman, M. Lubin, Nuclear Fusion 13, No. 6 (1973).
    [CrossRef]
  38. L. M. Goldman, J. Soures, M. Lubin, Phys. Rev. Lett. 31, 1184 (1973).
    [CrossRef]

1973 (10)

E. E. Stark, W. H. Reichelt, G. T. Schappert, T. F. Stratton, Appl. Phys. Lett. 23, 322 (1973).
[CrossRef]

K. Hohla, K. L. Kompa, Appl. Phys. Lett. 22, 77 (1973).
[CrossRef]

J. B. Gerardo, A. Wayne Johnson, IEEE J. Quantum Electron. QE-9, 748 (1973).
[CrossRef]

J. M. McMahon, J. L. Emmett, J. F. Holzrichter, J. B. Trenholme, J. Quantum Electron. QE-9, 992 (1973).
[CrossRef]

M. J. Lubin, J. M. Soures, L. M. Goldman, J. Appl. Phys. 44, 347 (1973).
[CrossRef]

N. G. Basov, O. N. Krokhin, G. V. Sklizkov, S. I. Fedotov, A. S. Shikanov, Sov. Phys. JETP 35, 109 (1973).

D. von der Linde, K. F. Rodgers, IEEE J. Quan. Electron. QE-9, 960 (1973).
[CrossRef]

J. Soures, L. Goldman, M. Lubin, Nuclear Fusion 13, No. 6 (1973).
[CrossRef]

L. M. Goldman, J. Soures, M. Lubin, Phys. Rev. Lett. 31, 1184 (1973).
[CrossRef]

J. Soures, L. Goldman, M. Lubin, Appl. Opt. 12, 927 (1973).
[CrossRef] [PubMed]

1972 (7)

S. W. Mead, R. E. Kidder, J. E. Swain, F. Rainer, J. Petruzzi, Appl. Opt. 11, 345 (1972).
[CrossRef] [PubMed]

P. C. Magnante, IEEE J. Quantum Electron. QE-8, 440 (1972).
[CrossRef]

A. Penzkofer, W. Kaiser, Appl. Phys. Lett. 21, 427 (1972).
[CrossRef]

P. G. Kryukov, V. S. Letokhov, IEEE J. Quantum Electron. QE-8, 766 (1972).
[CrossRef]

Jürg Steffen, Jean-Pierre Lörtsheer, G. Herziger, IEEE J. Quantum Electron. QE-8, 239 (1972).
[CrossRef]

J. Nuckolls, L. Wood, A. Thiessen, G. Zimmerman, Nature 239, 139 (1972).
[CrossRef]

E. S. Bliss, IEEE J. Quantum Electron. QE-8, 273 (1972).
[CrossRef]

1971 (3)

M. Lubin, A. Fraas, Sci. Am. 224, No. 6, 23 (1971).

G. Dubé, Appl. Phys. Lett. 18, 69 (1971).
[CrossRef]

J. MeMetz, Appl. Opt. 10, 1609 (1971).
[CrossRef]

1970 (2)

D. K. Duston, K. Rose, IEEE J. Quntum Electron. QE-6, 3 (1970).

M. A. Dúguay, J. W. Hansen, S. L. Shapiro, IEEE J. Quantum Electron. QE-6, 725 (1970).
[CrossRef]

1969 (2)

A. J. DeMaria, W. H. Glenn, M. J. Brienzae, M. E. Mack, Pros. IEEE 57, 2 (1969).
[CrossRef]

E. L. Dawes, J. H. Marburger, Phys. Rev. 179, 862 (1969).
[CrossRef]

1968 (1)

W. G. Wagner, H. A. Hauss, J. H. Marburger, Phys. Rev. 175, 256 (1968).
[CrossRef]

1967 (1)

G. D. Baldwin, E. P. Riedel, J. Appl. Phys. 38, 2726 (1967).
[CrossRef]

1966 (2)

1965 (1)

H. Kogelnik, Bell Syst. Tech. J. 43, 455 (1965).

1964 (1)

1962 (1)

K. Tomiyasu, Proc. IRE 50, 2488 (1962).

Avizonis, P. V.

C. R. Jones, P. V. Avizonis, P. Sivgals, in “Damage in Laser Materials,” National Bureau of Standards Special Publication 341 (1970) p. 28.

Baldwin, G. D.

G. D. Baldwin, E. P. Riedel, J. Appl. Phys. 38, 2726 (1967).
[CrossRef]

Basov, N. G.

N. G. Basov, O. N. Krokhin, G. V. Sklizkov, S. I. Fedotov, A. S. Shikanov, Sov. Phys. JETP 35, 109 (1973).

Bickart, C.

Bliss, E. S.

E. S. Bliss, IEEE J. Quantum Electron. QE-8, 273 (1972).
[CrossRef]

Brienzae, M. J.

A. J. DeMaria, W. H. Glenn, M. J. Brienzae, M. E. Mack, Pros. IEEE 57, 2 (1969).
[CrossRef]

Dawes, E. L.

E. L. Dawes, J. H. Marburger, Phys. Rev. 179, 862 (1969).
[CrossRef]

DeMaria, A. J.

A. J. DeMaria, W. H. Glenn, M. J. Brienzae, M. E. Mack, Pros. IEEE 57, 2 (1969).
[CrossRef]

Dubé, G.

G. Dubé, Appl. Phys. Lett. 18, 69 (1971).
[CrossRef]

Dúguay, M. A.

M. A. Dúguay, J. W. Hansen, S. L. Shapiro, IEEE J. Quantum Electron. QE-6, 725 (1970).
[CrossRef]

Duston, D. K.

D. K. Duston, K. Rose, IEEE J. Quntum Electron. QE-6, 3 (1970).

Emmett, J. L.

J. M. McMahon, J. L. Emmett, J. F. Holzrichter, J. B. Trenholme, J. Quantum Electron. QE-9, 992 (1973).
[CrossRef]

Fedotov, S. I.

N. G. Basov, O. N. Krokhin, G. V. Sklizkov, S. I. Fedotov, A. S. Shikanov, Sov. Phys. JETP 35, 109 (1973).

Fraas, A.

M. Lubin, A. Fraas, Sci. Am. 224, No. 6, 23 (1971).

Gerardo, J. B.

J. B. Gerardo, A. Wayne Johnson, IEEE J. Quantum Electron. QE-9, 748 (1973).
[CrossRef]

Glenn, W. H.

A. J. DeMaria, W. H. Glenn, M. J. Brienzae, M. E. Mack, Pros. IEEE 57, 2 (1969).
[CrossRef]

Goldman, L.

J. Soures, L. Goldman, M. Lubin, Appl. Opt. 12, 927 (1973).
[CrossRef] [PubMed]

J. Soures, L. Goldman, M. Lubin, Nuclear Fusion 13, No. 6 (1973).
[CrossRef]

Goldman, L. M.

L. M. Goldman, J. Soures, M. Lubin, Phys. Rev. Lett. 31, 1184 (1973).
[CrossRef]

M. J. Lubin, J. M. Soures, L. M. Goldman, J. Appl. Phys. 44, 347 (1973).
[CrossRef]

Hansen, J. W.

M. A. Dúguay, J. W. Hansen, S. L. Shapiro, IEEE J. Quantum Electron. QE-6, 725 (1970).
[CrossRef]

Hauss, H. A.

W. G. Wagner, H. A. Hauss, J. H. Marburger, Phys. Rev. 175, 256 (1968).
[CrossRef]

Herziger, G.

Jürg Steffen, Jean-Pierre Lörtsheer, G. Herziger, IEEE J. Quantum Electron. QE-8, 239 (1972).
[CrossRef]

Hohla, K.

K. Hohla, K. L. Kompa, Appl. Phys. Lett. 22, 77 (1973).
[CrossRef]

Holzrichter, J. F.

J. M. McMahon, J. L. Emmett, J. F. Holzrichter, J. B. Trenholme, J. Quantum Electron. QE-9, 992 (1973).
[CrossRef]

Jones, C. R.

C. R. Jones, P. V. Avizonis, P. Sivgals, in “Damage in Laser Materials,” National Bureau of Standards Special Publication 341 (1970) p. 28.

Kaiser, W.

A. Penzkofer, W. Kaiser, Appl. Phys. Lett. 21, 427 (1972).
[CrossRef]

Kidder, R. E.

S. W. Mead, R. E. Kidder, J. E. Swain, F. Rainer, J. Petruzzi, Appl. Opt. 11, 345 (1972).
[CrossRef] [PubMed]

R. E. Kidder. “Some Aspects of Controlled Fusion by Use of Lasers,” Proceedings Esfahan Symposium on Fundamental and Applied Laser Physics, M. S. Feld et al., Ed. (Wiley, New York, 1973).

Kogelnik, H.

H. Kogelnik, Bell Syst. Tech. J. 43, 455 (1965).

Kompa, K. L.

K. Hohla, K. L. Kompa, Appl. Phys. Lett. 22, 77 (1973).
[CrossRef]

Krokhin, O. N.

N. G. Basov, O. N. Krokhin, G. V. Sklizkov, S. I. Fedotov, A. S. Shikanov, Sov. Phys. JETP 35, 109 (1973).

Kryukov, P. G.

P. G. Kryukov, V. S. Letokhov, IEEE J. Quantum Electron. QE-8, 766 (1972).
[CrossRef]

Letokhov, V. S.

P. G. Kryukov, V. S. Letokhov, IEEE J. Quantum Electron. QE-8, 766 (1972).
[CrossRef]

Lörtsheer, Jean-Pierre

Jürg Steffen, Jean-Pierre Lörtsheer, G. Herziger, IEEE J. Quantum Electron. QE-8, 239 (1972).
[CrossRef]

Lubin, M.

J. Soures, L. Goldman, M. Lubin, Appl. Opt. 12, 927 (1973).
[CrossRef] [PubMed]

J. Soures, L. Goldman, M. Lubin, Nuclear Fusion 13, No. 6 (1973).
[CrossRef]

L. M. Goldman, J. Soures, M. Lubin, Phys. Rev. Lett. 31, 1184 (1973).
[CrossRef]

M. Lubin, A. Fraas, Sci. Am. 224, No. 6, 23 (1971).

Lubin, M. J.

M. J. Lubin, J. M. Soures, L. M. Goldman, J. Appl. Phys. 44, 347 (1973).
[CrossRef]

Mack, M. E.

A. J. DeMaria, W. H. Glenn, M. J. Brienzae, M. E. Mack, Pros. IEEE 57, 2 (1969).
[CrossRef]

Magnante, P. C.

P. C. Magnante, IEEE J. Quantum Electron. QE-8, 440 (1972).
[CrossRef]

Marburger, J. H.

E. L. Dawes, J. H. Marburger, Phys. Rev. 179, 862 (1969).
[CrossRef]

W. G. Wagner, H. A. Hauss, J. H. Marburger, Phys. Rev. 175, 256 (1968).
[CrossRef]

McMahon, J. M.

J. M. McMahon, J. L. Emmett, J. F. Holzrichter, J. B. Trenholme, J. Quantum Electron. QE-9, 992 (1973).
[CrossRef]

J. M. McMahon, in “Laser Induced Damage in Optical Materials: 1972,” National Bureau of Standards Special Publication 372 (1972) p. 100.

Mead, S. W.

MeMetz, J.

Murty, M. V. R. K.

Nuckolls, J.

J. Nuckolls, L. Wood, A. Thiessen, G. Zimmerman, Nature 239, 139 (1972).
[CrossRef]

Patek, K.

K. Patek, Glass Lasers (London: Butterworth and Co., 1970).

Penzkofer, A.

A. Penzkofer, W. Kaiser, Appl. Phys. Lett. 21, 427 (1972).
[CrossRef]

Petruzzi, J.

Rainer, F.

Reichelt, W. H.

E. E. Stark, W. H. Reichelt, G. T. Schappert, T. F. Stratton, Appl. Phys. Lett. 23, 322 (1973).
[CrossRef]

Riedel, E. P.

G. D. Baldwin, E. P. Riedel, J. Appl. Phys. 38, 2726 (1967).
[CrossRef]

Rodgers, K. F.

D. von der Linde, K. F. Rodgers, IEEE J. Quan. Electron. QE-9, 960 (1973).
[CrossRef]

Rose, K.

D. K. Duston, K. Rose, IEEE J. Quntum Electron. QE-6, 3 (1970).

Schappert, G. T.

E. E. Stark, W. H. Reichelt, G. T. Schappert, T. F. Stratton, Appl. Phys. Lett. 23, 322 (1973).
[CrossRef]

Shapiro, S. L.

M. A. Dúguay, J. W. Hansen, S. L. Shapiro, IEEE J. Quantum Electron. QE-6, 725 (1970).
[CrossRef]

Shikanov, A. S.

N. G. Basov, O. N. Krokhin, G. V. Sklizkov, S. I. Fedotov, A. S. Shikanov, Sov. Phys. JETP 35, 109 (1973).

Sivgals, P.

C. R. Jones, P. V. Avizonis, P. Sivgals, in “Damage in Laser Materials,” National Bureau of Standards Special Publication 341 (1970) p. 28.

Sklizkov, G. V.

N. G. Basov, O. N. Krokhin, G. V. Sklizkov, S. I. Fedotov, A. S. Shikanov, Sov. Phys. JETP 35, 109 (1973).

Snitzer, E.

Soures, J.

L. M. Goldman, J. Soures, M. Lubin, Phys. Rev. Lett. 31, 1184 (1973).
[CrossRef]

J. Soures, L. Goldman, M. Lubin, Appl. Opt. 12, 927 (1973).
[CrossRef] [PubMed]

J. Soures, L. Goldman, M. Lubin, Nuclear Fusion 13, No. 6 (1973).
[CrossRef]

Soures, J. M.

M. J. Lubin, J. M. Soures, L. M. Goldman, J. Appl. Phys. 44, 347 (1973).
[CrossRef]

Stark, E. E.

E. E. Stark, W. H. Reichelt, G. T. Schappert, T. F. Stratton, Appl. Phys. Lett. 23, 322 (1973).
[CrossRef]

Steffen, Jürg

Jürg Steffen, Jean-Pierre Lörtsheer, G. Herziger, IEEE J. Quantum Electron. QE-8, 239 (1972).
[CrossRef]

Stratton, T. F.

E. E. Stark, W. H. Reichelt, G. T. Schappert, T. F. Stratton, Appl. Phys. Lett. 23, 322 (1973).
[CrossRef]

Suydam, B. R.

B. R. Suydam, in “Laser Induced Damage in Optical Materials,” National Bureau of Standards Special Publication 387 (1973).

B. R. Suydam, Los Alamos Sci. Lab. Report LA-5003-MS (1973).

Swain, J. E.

Thiessen, A.

J. Nuckolls, L. Wood, A. Thiessen, G. Zimmerman, Nature 239, 139 (1972).
[CrossRef]

Tomiyasu, K.

K. Tomiyasu, Proc. IRE 50, 2488 (1962).

Trenholme, J. B.

J. M. McMahon, J. L. Emmett, J. F. Holzrichter, J. B. Trenholme, J. Quantum Electron. QE-9, 992 (1973).
[CrossRef]

von der Linde, D.

D. von der Linde, K. F. Rodgers, IEEE J. Quan. Electron. QE-9, 960 (1973).
[CrossRef]

Wagner, W. G.

W. G. Wagner, H. A. Hauss, J. H. Marburger, Phys. Rev. 175, 256 (1968).
[CrossRef]

Wayne Johnson, A.

J. B. Gerardo, A. Wayne Johnson, IEEE J. Quantum Electron. QE-9, 748 (1973).
[CrossRef]

Welling, H.

Wood, L.

J. Nuckolls, L. Wood, A. Thiessen, G. Zimmerman, Nature 239, 139 (1972).
[CrossRef]

Zimmerman, G.

J. Nuckolls, L. Wood, A. Thiessen, G. Zimmerman, Nature 239, 139 (1972).
[CrossRef]

Appl. Opt. (5)

Appl. Phys. Lett. (4)

G. Dubé, Appl. Phys. Lett. 18, 69 (1971).
[CrossRef]

A. Penzkofer, W. Kaiser, Appl. Phys. Lett. 21, 427 (1972).
[CrossRef]

E. E. Stark, W. H. Reichelt, G. T. Schappert, T. F. Stratton, Appl. Phys. Lett. 23, 322 (1973).
[CrossRef]

K. Hohla, K. L. Kompa, Appl. Phys. Lett. 22, 77 (1973).
[CrossRef]

Bell Syst. Tech. J. (1)

H. Kogelnik, Bell Syst. Tech. J. 43, 455 (1965).

IEEE J. Quan. Electron. (1)

D. von der Linde, K. F. Rodgers, IEEE J. Quan. Electron. QE-9, 960 (1973).
[CrossRef]

IEEE J. Quantum Electron. (6)

P. G. Kryukov, V. S. Letokhov, IEEE J. Quantum Electron. QE-8, 766 (1972).
[CrossRef]

P. C. Magnante, IEEE J. Quantum Electron. QE-8, 440 (1972).
[CrossRef]

Jürg Steffen, Jean-Pierre Lörtsheer, G. Herziger, IEEE J. Quantum Electron. QE-8, 239 (1972).
[CrossRef]

M. A. Dúguay, J. W. Hansen, S. L. Shapiro, IEEE J. Quantum Electron. QE-6, 725 (1970).
[CrossRef]

J. B. Gerardo, A. Wayne Johnson, IEEE J. Quantum Electron. QE-9, 748 (1973).
[CrossRef]

E. S. Bliss, IEEE J. Quantum Electron. QE-8, 273 (1972).
[CrossRef]

IEEE J. Quntum Electron. (1)

D. K. Duston, K. Rose, IEEE J. Quntum Electron. QE-6, 3 (1970).

J. Appl. Phys. (2)

M. J. Lubin, J. M. Soures, L. M. Goldman, J. Appl. Phys. 44, 347 (1973).
[CrossRef]

G. D. Baldwin, E. P. Riedel, J. Appl. Phys. 38, 2726 (1967).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Quantum Electron. (1)

J. M. McMahon, J. L. Emmett, J. F. Holzrichter, J. B. Trenholme, J. Quantum Electron. QE-9, 992 (1973).
[CrossRef]

Nature (1)

J. Nuckolls, L. Wood, A. Thiessen, G. Zimmerman, Nature 239, 139 (1972).
[CrossRef]

Nuclear Fusion (1)

J. Soures, L. Goldman, M. Lubin, Nuclear Fusion 13, No. 6 (1973).
[CrossRef]

Phys. Rev. (2)

W. G. Wagner, H. A. Hauss, J. H. Marburger, Phys. Rev. 175, 256 (1968).
[CrossRef]

E. L. Dawes, J. H. Marburger, Phys. Rev. 179, 862 (1969).
[CrossRef]

Phys. Rev. Lett. (1)

L. M. Goldman, J. Soures, M. Lubin, Phys. Rev. Lett. 31, 1184 (1973).
[CrossRef]

Proc. IRE (1)

K. Tomiyasu, Proc. IRE 50, 2488 (1962).

Pros. IEEE (1)

A. J. DeMaria, W. H. Glenn, M. J. Brienzae, M. E. Mack, Pros. IEEE 57, 2 (1969).
[CrossRef]

Sci. Am. (1)

M. Lubin, A. Fraas, Sci. Am. 224, No. 6, 23 (1971).

Sov. Phys. JETP (1)

N. G. Basov, O. N. Krokhin, G. V. Sklizkov, S. I. Fedotov, A. S. Shikanov, Sov. Phys. JETP 35, 109 (1973).

Other (7)

K. Patek, Glass Lasers (London: Butterworth and Co., 1970).

C. R. Jones, P. V. Avizonis, P. Sivgals, in “Damage in Laser Materials,” National Bureau of Standards Special Publication 341 (1970) p. 28.

R. E. Kidder. “Some Aspects of Controlled Fusion by Use of Lasers,” Proceedings Esfahan Symposium on Fundamental and Applied Laser Physics, M. S. Feld et al., Ed. (Wiley, New York, 1973).

B. R. Suydam, in “Laser Induced Damage in Optical Materials,” National Bureau of Standards Special Publication 387 (1973).

B. R. Suydam, Los Alamos Sci. Lab. Report LA-5003-MS (1973).

J. M. McMahon, in “Laser Induced Damage in Optical Materials: 1972,” National Bureau of Standards Special Publication 372 (1972) p. 100.

This is a camera manufactured by Electro-Photonics Ltd. of Dunmurry, N. Ireland.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (21)

Fig. 1
Fig. 1

Schematic diagram of laser system.

Fig. 2
Fig. 2

Nd:glass oscillator output. Sequential mode-locked trains monitored by PIN photodiode.

Fig. 3
Fig. 3

Microdensitometer tracing of TPF pholographs showing (a) typical TPF produced by pulse 110 psec wide and (b) pulse with fine structure of 10–20 psec.

Fig. 4
Fig. 4

High speed streak camera photographs of (top) 100 psec wide switched-out pulse and (bottom) 600 psec wide switched-out pulse.

Fig. 5
Fig. 5

Schematic of pulse-switching system.

Fig. 6
Fig. 6

(a) Apodized aperture. (b) Transmission curve of apodized aperture.

Fig. 7
Fig. 7

Schematic diagram of pulse stretcher unit with the calculated output for the following values of mirror reflectance and filter transmission: M1 to M6 are 50% beam splitters, M7 to M12 are high reflectance mirrors, A = 13%, B = 58%, and C = 14% transmitting filters.

Fig. 8
Fig. 8

Stored energy density profile of 90-mm-diam rod amplifier with 0.5% Nd2O3 doped ED-2 glass. The pump energy density for these measurements is 15 J/cm3.

Fig. 9
Fig. 9

Stored energy density of 90-mm rod amplifier vs pump energy density.

Fig. 10
Fig. 10

Comparison of experimentally measured output of 50-mm rod amplifier, with 2% Nd2O3 doped ED 2 vs the calculated output, assuming a three-level system and three different values of nonlinear absorption coefficient.

Fig. 11
Fig. 11

Schematic diagram of liquid-cooled, face-pumped amplifier.

Fig. 12
Fig. 12

Stored energy density vs pump energy density for liquid-cooled, face-pumped amplifier and for the same amplifier geometry without index-matching liquid and glass prisms.

Fig. 13
Fig. 13

Maximum laser beam energy plotted as a function of path through laser glass. The output of AMP V is split into two beams and amplified by two parallel lines of liquid-cooled amplifier modules.

Fig. 14
Fig. 14

Beam propagation calculation showing the rejection of a 2% reflection from the target by means of a single rotator and two dye cells. The reflected beam after AMP I is reduced by the negative lens and Pockels cells isolators.

Fig. 15
Fig. 15

Comparison of oscillator spectrum and amplified pulse spectrum. The amplified pulse is a 40-J, 10−10 sec (FWHM) pulse at the output of the 50-mm rod amplifier.

Fig. 16
Fig. 16

Schematic diagram of shearing plate interferogram setup.

Fig. 17
Fig. 17

Shearing interferograms produced at (a) output of the 50-mm diameter rod amplifier at an energy of 30 J and the 64-mm rod amplifier at a level of 60 J, with no apodized aperture; (b) at the uutput of the 50-mm rod amplifier at a level of 40 J and at the output of the 90-mm amplifier at a level of 150 J, with an apodized aperture in the beam. Pulse width for all shots is 10−10 sec (FWHM).

Fig. 18
Fig. 18

Schematic diagram of in-line hologram set-up.

Fig. 19
Fig. 19

In-line hologram produced at the output of the 64-mm rod with 60-J, 10−10 sec pulse.

Fig. 20
Fig. 20

Schematic diagram of far-field diagnostic setup.

Fig. 21
Fig. 21

Sample far-field patterns produced at the output of the 90-mm rod amplifier at a level of 150 J in a 10−10 sec pulse.

Tables (2)

Tables Icon

Table I Lasers for Fusion Application

Tables Icon

Table II Characteristics of Amplifier System

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

P 0 = K c λ 2 / n 2 ( w ) ,
P d = [ 1 + ( 2 π a 0 θ / λ ) 2 ] P 0 ,
Δ ν / ν = ( l / c ) ( δ n / δ t ) ,
n = n 0 [ 1 ( 2 r 2 / b 2 ) ] ,
Δ S = 7.9 × 10 6 Δ T l ( cm ) ,
f = b 2 / 4 n 0 l 540 cm .
g = [ 1 ( l / n 0 f ) ] 1 / 2 [ ( L l ) / 2 f ] ,
ω 2 = ( λ L / π ) [ 1 / ( 1 g 2 ) ] 1 / 2 .
( d I d x ) m = γ I 2 ( W / cm 3 ) ,
G = e α l > 1 / R ,
Δ λ = 0.441 λ 2 / 2 n d cos θ .
V = ( I max I min I max + I min )
Y = { 2 m λ [ R R / ( R R ) ] } 1 / 2 ,

Metrics